Advertisement

Spatiotemporal gait changes in people with multiple sclerosis with different disease progression subtypes

      Highlights

      • Gait parameters differed between people with multiple sclerosis and controls.
      • Gait variability differed between people with multiple sclerosis and controls.
      • Multiple sclerosis groups had less spatiotemporal modulation between walking speeds than controls.
      • Similar gait characteristics between multiple sclerosis subtypes who are ambulatory.

      Abstract

      Background

      Gait impairment is common in people with multiple sclerosis (MS), but less is known about gait differences between MS disease progression subtypes. The objective here was to examine differences in spatiotemporal gait in MS and between relapsing-remitting and progressive subtypes during the timed-25-ft-walk test. Our specific aims were to investigate (1) spatiotemporal, (2) spatiotemporal variability, and (3) gait modulation differences between healthy controls and MS subtypes at preferred and fast walking speed.

      Methods

      This study included 27 controls, 18 relapsing-remitting MS, and 13 progressive MS participants. Participants wore six inertial sensors and walked overground without walking aids at preferred and fast-as-possible speeds.

      Findings

      Both MS groups had significantly lower walking speed than controls, with a trend towards lower preferred gait speed in progressive compared to relapsing-remitting MS (ES = 0.502). Although most spatiotemporal gait parameters differed between controls and MS groups, differences were not significant between MS subtypes in these parameters and their variability, with low to moderate effect sizes during preferred and fast walking. Both MS groups showed reduced modulation in gait compared to controls and no significant differences between MS subtypes.

      Interpretation

      Gait in MS is altered compared to controls. Although gait may change with progressive MS, the overall small differences in the gait parameters between the MS subtypes observed in this sample suggests that those with the progressive form of MS who are independently ambulatory and without further clinically meaningful changes in gait speed may not show gait decrements greater than the relapsing-remitting form of the disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Awai L.
        • Bolliger M.
        • Ferguson A.R.
        • Courtine G.
        • Curt A.
        Influence of spinal cord integrity on gait control in human spinal cord injury.
        Neurorehabil. Neural Repair. 2016; 30: 562-572
        • Barrett R.S.
        • Mills P.M.
        • Begg R.K.
        A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking.
        Gait Posture. 2010; 32: 429-435
        • Begg R.
        • Best R.
        • Dell'Oro L.
        • Taylor S.
        Minimum foot clearance during walking: strategies for the minimisation of trip-related falls.
        Gait Posture. 2007; 25: 191-198
        • Benedetti M.G.
        • Piperno R.
        • Simoncini L.
        • Bonato P.
        • Tonini A.
        • Giannini S.
        Gait abnormalities in minimally impaired multiple sclerosis patients.
        Mult. Scler. 1999; 5: 363-368
        • Brach J.S.
        • Studenski S.A.
        • Perera S.
        • VanSwearingen J.M.
        • Newman A.B.
        Gait variability and the risk of incident mobility disability in community-dwelling older adults.
        J. Gerontol. A Biol. Sci. Med. Sci. 2007; 62: 983-988
        • Chee J.N.
        • Ye B.
        • Gregor S.
        • Berbrayer D.
        • Mihailidis A.
        • Patterson K.K.
        Influence of multiple sclerosis on spatiotemporal gait parameters: a systematic review and Meta-regression.
        Arch. Phys. Med. Rehabil. 2021; 102: 1801-1815
        • Comber L.
        • Galvin R.
        • Coote S.
        Gait deficits in people with multiple sclerosis: a systematic review and meta-analysis.
        Gait Posture. 2017; 51: 25-35
        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2008; 372: 1502-1517
        • Craig J.J.
        • Bruetsch A.P.
        • Lynch S.G.
        • Horak F.B.
        • Huisinga J.M.
        Instrumented balance and walking assessments in persons with multiple sclerosis show strong test-retest reliability.
        Journal of NeuroEngineering and Rehabilitation. 2017; 14
        • Crenshaw S.J.
        • Royer T.D.
        • Richards J.G.
        • Hudson D.J.
        Gait variability in people with multiple sclerosis.
        Mult. Scler. 2006; 12: 613-619
        • Dana A.
        • Rafiee S.
        • Gholami A.
        Motor reaction time and accuracy in patients with multiple sclerosis: effects of an active computerized training program.
        Neurol. Sci. 2019; 40: 1849-1854
        • Djajadikarta Z.J.
        • Dongés S.C.
        • Brooks J.
        • Kennedy D.S.
        • Gandevia S.C.
        • Taylor J.L.
        Impaired central drive to plantarflexors and minimal ankle proprioceptive deficit in people with multiple sclerosis.
        Multiple Sclerosis and Related Disorders. 2020; 46102584
        • Dujmovic I.
        • Radovanovic S.
        • Martinovic V.
        • Dackovic J.
        • Maric G.
        • Mesaros S.
        • Pekmezovic T.
        • Kostic V.
        • Drulovic J.
        Gait pattern in patients with different multiple sclerosis phenotypes.
        Mult Scler Relat Disord. 2017; 13: 13-20
        • Gervasoni E.
        • Parelli R.
        • Uszynski M.
        • Crippa A.
        • Marzegan A.
        • Montesano A.
        • Cattaneo D.
        Effects of functional electrical stimulation on reducing falls and improving gait parameters in multiple sclerosis and stroke.
        PM R. 2017; 9e331
        • Gianfrancesco M.A.
        • Triche E.W.
        • Fawcett J.A.
        • Labas M.P.
        • Patterson T.S.
        • Lo A.C.
        Speed- and cane-related alterations in gait parameters in individuals with multiple sclerosis.
        Gait & Posture. 2011; 33: 140-142
        • Godinho C.
        • Domingos J.
        • Cunha G.
        • Santos A.T.
        • Fernandes R.M.
        • Abreu D.
        • Goncalves N.
        • Matthews H.
        • Isaacs T.
        • Duffen J.
        • Al-Jawad A.
        • Larsen F.
        • Serrano A.
        • Weber P.
        • Thoms A.
        • Sollinger S.
        • Graessner H.
        • Maetzler W.
        • Ferreira J.J.
        A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson's disease.
        J Neuroeng Rehabil. 2016; 13: 24
        • Heesen C.
        • Böhm J.
        • Reich C.
        • Kasper J.
        • Goebel M.
        • Gold S.M.
        Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable.
        Mult. Scler. 2008; 14: 988-991
        • Heesen C.
        • Haase R.
        • Melzig S.
        • Poettgen J.
        • Berghoff M.
        • Paul F.
        • Zettl U.
        • Marziniak M.
        • Angstwurm K.
        • Kern R.
        • Ziemssen T.
        • Stellmann J.P.
        Perceptions on the value of bodily functions in multiple sclerosis.
        Acta Neurol. Scand. 2018; 137: 356-362
        • Hobart J.
        • Blight A.R.
        • Goodman A.
        • Lynn F.
        • Putzki N.
        Timed 25-foot walk: direct evidence that improving 20% or greater is clinically meaningful in MS.
        Neurology. 2013; 80: 1509-1517
        • Jensen H.B.
        • Mamoei S.
        • Ravnborg M.
        • Dalgas U.
        • Stenager E.
        Distribution-based estimates of minimum clinically important difference in cognition, arm function and lower body function after slow release-fampridine treatment of patients with multiple sclerosis.
        Mult Scler Relat Disord. 2016; 7: 58-60
        • Kaipust J.P.
        • Huisinga J.M.
        • Filipi M.
        • Stergiou N.
        Gait variability measures reveal differences between multiple sclerosis patients and healthy controls.
        Mot. Control. 2012; 16: 229-244
        • Kalron A.
        Gait variability across the disability spectrum in people with multiple sclerosis.
        J. Neurol. Sci. 2016; 361: 1-6
        • Kalron A.
        Association between gait variability, falls and mobility in people with multiple sclerosis: a specific observation on the EDSS 4.0-4.5 level.
        NeuroRehabilitation. 2017; 40: 579-585
        • Kerrigan D.C.
        • Todd M.K.
        • Della Croce U.
        • Lipsitz L.A.
        • Collins J.J.
        Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments.
        Arch. Phys. Med. Rehabil. 1998; 79: 317-322
        • Kerrigan D.C.
        • Frates E.P.
        • Rogan S.
        • Riley P.O.
        Hip hiking and circumduction: quantitative definitions.
        Am J Phys Med Rehabil. 2000; 79: 247-252
        • Koch M.
        • Mostert J.
        • Heersema D.
        • De Keyser J.
        Progression in multiple sclerosis: further evidence of an age dependent process.
        J. Neurol. Sci. 2007; 255: 35-41
        • Koch M.
        • Kingwell E.
        • Rieckmann P.
        • Tremlett H.
        The natural history of primary progressive multiple sclerosis.
        Neurology. 2009; 73: 1996-2002
        • Koch M.
        • Kingwell E.
        • Rieckmann P.
        • Tremlett H.
        • Neurologists U.M.C.
        The natural history of secondary progressive multiple sclerosis.
        J. Neurol. Neurosurg. Psychiatry. 2010; 81: 1039-1043
        • Kremenchutzky M.
        • Rice G.P.
        • Baskerville J.
        • Wingerchuk D.M.
        • Ebers G.C.
        The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease.
        Brain. 2006; 129: 584-594
        • Krupp L.B.
        • Serafin D.J.
        • Christodoulou C.
        Multiple sclerosis-associated fatigue.
        Expert. Rev. Neurother. 2010; 10: 1437-1447
        • Larocca N.G.
        Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners.
        Patient. 2011; 4: 189-201
        • Lublin F.D.
        • Reingold S.C.
        Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis.
        Neurology. 1996; 46: 907-911
        • Lublin F.D.
        • Reingold S.C.
        • Cohen J.A.
        • Cutter G.R.
        • Sorensen P.S.
        • Thompson A.J.
        • Wolinsky J.S.
        • Balcer L.J.
        • Banwell B.
        • Barkhof F.
        • Bebo Jr., B.
        • Calabresi P.A.
        • Clanet M.
        • Comi G.
        • Fox R.J.
        • Freedman M.S.
        • Goodman A.D.
        • Inglese M.
        • Kappos L.
        • Kieseier B.C.
        • Lincoln J.A.
        • Lubetzki C.
        • Miller A.E.
        • Montalban X.
        • O'Connor P.W.
        • Petkau J.
        • Pozzilli C.
        • Rudick R.A.
        • Sormani M.P.
        • Stuve O.
        • Waubant E.
        • Polman C.H.
        Defining the clinical course of multiple sclerosis: the 2013 revisions.
        Neurology. 2014; 83: 278-286
        • Mahad D.H.
        • Trapp B.D.
        • Lassmann H.
        Pathological mechanisms in progressive multiple sclerosis.
        Lancet Neurol. 2015; 14: 183-193
        • Martini D.N.
        • Morris R.
        • Madhyastha T.M.
        • Grabowski T.J.
        • Oakley J.
        • Hu S.-C.
        • Zabetian C.P.
        • Edwards K.L.
        • Hiller A.
        • Chung K.
        • Ramsey K.
        • Lapidus J.A.
        • Cholerton B.
        • Montine T.J.
        • Quinn J.F.
        • Horak F.B.
        Relationships between sensorimotor inhibition and mobility in older adults with and without Parkinson’s disease.
        The Journals of Gerontology: Series A. 2021; 76: 630-637
        • McGowan K.
        • Gunn S.M.
        • Vorobeychik G.
        • Marigold D.S.
        Short-term motor learning and retention during visually guided walking in persons with multiple sclerosis.
        Neurorehabil. Neural Repair. 2017; 31: 648-656
        • Miehm J.D.
        • Buonaccorsi J.
        • Lim J.
        • Sato S.
        • Rajala C.
        • Averill J.
        • Khalighinejad F.
        • Ionete C.
        • Jones S.L.
        • Kent J.A.
        • van Emmerik R.E.
        Sensorimotor function in progressive multiple sclerosis.
        Mult Scler J Exp Transl Clin. 2020; 6 (2055217320934835)
        • Mills P.M.
        • Barrett R.S.
        Swing phase mechanics of healthy young and elderly men.
        Hum. Mov. Sci. 2001; 20: 427-446
        • Mills P.M.
        • Barrett R.S.
        • Morrison S.
        Toe clearance variability during walking in young and elderly men.
        Gait Posture. 2008; 28: 101-107
        • Morris R.
        • Stuart S.
        • McBarron G.
        • Fino P.C.
        • Mancini M.
        • Curtze C.
        Validity of mobility lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease.
        Physiol. Meas. 2019; 40095003
        • Muller R.
        • Hamacher D.
        • Hansen S.
        • Oschmann P.
        • Keune P.M.
        Wearable inertial sensors are highly sensitive in the detection of gait disturbances and fatigue at early stages of multiple sclerosis.
        BMC Neurol. 2021; 21: 337
        • Newsome S.D.
        • Wang J.I.
        • Kang J.Y.
        • Calabresi P.A.
        • Zackowski K.M.
        Quantitative measures detect sensory and motor impairments in multiple sclerosis.
        J. Neurol. Sci. 2011; 305: 103-111
        • Nguemeni C.
        • Homola G.A.
        • Nakchbandi L.
        • Pham M.
        • Volkmann J.
        • Zeller D.
        A single session of anodal cerebellar transcranial direct current stimulation does not induce facilitation of locomotor consolidation in patients with multiple sclerosis.
        Front. Hum. Neurosci. 2020; 14
        • Pau M.
        • Caggiari S.
        • Mura A.
        • Corona F.
        • Leban B.
        • Coghe G.
        • Lorefice L.
        • Marrosu M.G.
        • Cocco E.
        Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial sensors: comparison with patient-based measure.
        Mult Scler Relat Disord. 2016; 10: 187-191
        • Peebles A.T.
        • Reinholdt A.
        • Bruetsch A.P.
        • Lynch S.G.
        • Huisinga J.M.
        Dynamic margin of stability during gait is altered in persons with multiple sclerosis.
        J. Biomech. 2016; 49: 3949-3955
        • Peebles A.T.
        • Bruetsch A.P.
        • Lynch S.G.
        • Huisinga J.M.
        Dynamic balance in persons with multiple sclerosis who have a falls history is altered compared to non-fallers and to healthy controls.
        J. Biomech. 2017; 63: 158-163
        • Perry J.
        • Burnfield J.M.
        Gait Analysis : Normal and Pathological Function.
        2nd ed. SLACK, Thorofare, NJ2010
        • Pirker W.
        • Katzenschlager R.
        Gait disorders in adults and the elderly : a clinical guide.
        Wien. Klin. Wochenschr. 2017; 129: 81-95
        • Polman C.H.
        • Reingold S.C.
        • Banwell B.
        • Clanet M.
        • Cohen J.A.
        • Filippi M.
        • Fujihara K.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • Lublin F.D.
        • Montalban X.
        • O’Connor P.
        • Sandberg-Wollheim M.
        • Thompson A.J.
        • Waubant E.
        • Weinshenker B.
        • Wolinsky J.S.
        Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria.
        Ann. Neurol. 2011; 69: 292-302
        • Remelius J.G.
        • Jones S.L.
        • House J.D.
        • Busa M.A.
        • Averill J.L.
        • Sugumaran K.
        • Kent-Braun J.A.
        • Van Emmerik R.E.
        Gait impairments in persons with multiple sclerosis across preferred and fixed walking speeds.
        Arch. Phys. Med. Rehabil. 2012; 93: 1637-1642
        • Sarabandi M.
        A comparison of implicit and explicit motor sequence learning in patients with relapsing-remitting multiple sclerosis.
        Sports (Basel). 2017; 5
        • Schlachetzki J.C.M.
        • Barth J.
        • Marxreiter F.
        • Gossler J.
        • Kohl Z.
        • Reinfelder S.
        • Gassner H.
        • Aminian K.
        • Eskofier B.M.
        • Winkler J.
        • Klucken J.
        Wearable sensors objectively measure gait parameters in Parkinson's disease.
        PLoS One. 2017; 12e0183989
        • Shah V.V.
        • McNames J.
        • Harker G.
        • Curtze C.
        • Carlson-Kuhta P.
        • Spain R.I.
        • El-Gohary M.
        • Mancini M.
        • Horak F.B.
        Does gait bout definition influence the ability to discriminate gait quality between people with and without multiple sclerosis during daily life?.
        Gait & Posture. 2021; 84: 108-113
        • Shorter K.A.
        • Wu A.
        • Kuo A.D.
        The high cost of swing leg circumduction during human walking.
        Gait Posture. 2017; 54: 265-270
        • Socie M.J.
        • Motl R.W.
        • Pula J.H.
        • Sandroff B.M.
        • Sosnoff J.J.
        Gait variability and disability in multiple sclerosis.
        Gait Posture. 2013; 38: 51-55
        • Socie M.J.
        • Motl R.W.
        • Sosnoff J.J.
        Examination of spatiotemporal gait parameters during the 6-min walk in individuals with multiple sclerosis.
        Int. J. Rehabil. Res. 2014; 37: 311-316
        • Sosnoff J.J.
        • Sandroff B.M.
        • Motl R.W.
        Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability.
        Gait Posture. 2012; 36: 154-156
        • Swanson C.W.
        • Richmond S.B.
        • Sharp B.E.
        • Fling B.W.
        Middle-age people with multiple sclerosis demonstrate similar mobility characteristics to neurotypical older adults.
        Multiple Sclerosis and Related Disorders. 2021; 51102924
        • Vister E.
        • Tijsma M.E.
        • Hoang P.D.
        • Lord S.R.
        Fatigue, physical activity, quality of life, and fall risk in people with multiple sclerosis.
        Int J MS Care. 2017; 19: 91-98
        • Washabaugh E.P.
        • Kalyanaraman T.
        • Adamczyk P.G.
        • Claflin E.S.
        • Krishnan C.
        Validity and repeatability of inertial measurement units for measuring gait parameters.
        Gait Posture. 2017; 55: 87-93
        • Weinshenker B.G.
        Natural history of multiple sclerosis.
        Ann. Neurol. 1994; 36: S6-11
        • Weinshenker B.G.
        • Bass B.
        • Rice G.P.
        • Noseworthy J.
        • Carriere W.
        • Baskerville J.
        • Ebers G.C.
        The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability.
        Brain. 1989; 112: 133-146
        • Weller D.
        • Filli L.
        • Meyer C.
        • Lorincz L.
        • Linnebank M.
        • Weller M.
        • Curt A.
        • Zorner B.
        Impaired speed-dependent modulation of the gait pattern in multiple sclerosis.
        J. Neurol. 2020; 267: 2998-3007
        • Wu A.R.
        • Kuo A.D.
        Determinants of preferred ground clearance during swing phase of human walking.
        J. Exp. Biol. 2016; 219: 3106-3113
        • Wu Z.
        • Jiang X.
        • Zhong M.
        • Shen B.
        • Zhu J.
        • Pan Y.
        • Dong J.
        • Xu P.
        • Zhang W.
        • Zhang L.
        Wearable sensors measure ankle joint changes of patients with Parkinson’s disease before and after acute levodopa challenge.
        Parkinsons Dis. 2020; 2020: 2976535
        • Zackowski K.M.
        • Wang J.I.
        • McGready J.
        • Calabresi P.A.
        • Newsome S.D.
        Quantitative sensory and motor measures detect change overtime and correlate with walking speed in individuals with multiple sclerosis.
        Mult Scler Relat Disord. 2015; 4: 67-74