Advertisement

Computational lumbar spine models: A literature review

      Highlights

      • This review evaluated various types of lumbar spine models and their characteristics.
      • Many models feature significant simplifications that limit their accuracy and realism.
      • Larger numbers of unique models are needed to understand variation in the population.
      • Combining features from different model types could result in more accurate models.

      Abstract

      Background

      Computational spine models of various types have been employed to understand spine function, assess the risk that different activities pose to the spine, and evaluate techniques to prevent injury. The areas in which these models are applied has expanded greatly, potentially beyond the appropriate scope of each, given their capabilities. A comprehensive understanding of the components of these models provides insight into their current capabilities and limitations.

      Methods

      The objective of this review was to provide a critical assessment of the different characteristics of model elements employed across the spectrum of lumbar spine modeling and in newer combined methodologies to help better evaluate existing studies and delineate areas for future research and refinement.

      Findings

      A total of 155 studies met selection criteria and were included in this review. Most current studies use either highly detailed Finite Element models or simpler Musculoskeletal models driven with in vivo data. Many models feature significant geometric or loading simplifications that limit their realism and validity. Frequently, studies only create a single model and thus can't account for the impact of subject variability. The lack of model representation for certain subject cohorts leaves significant gaps in spine knowledge. Combining features from both types of modeling could result in more accurate and predictive models.

      Interpretation

      Development of integrated models combining elements from different model types in a framework that enables the evaluation of larger populations of subjects could address existing voids and enable more realistic representation of the biomechanics of the lumbar spine.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abouhossein A.
        • Weisse B.
        • Ferguson S.J.
        A multibody modelling approach to determine load sharing between passive elements of the lumbar spine.
        Comput. Methods Biomech. Biomed. Eng. 2011; 14 (Jun): 527-537
        • Abouhossein A.
        • Weisse B.
        • Ferguson S.J.
        Quantifying the centre of rotation pattern in a multi-body model of the lumbar spine.
        Comput. Methods Biomech. Biomed. Eng. 2013; 16: 1362-1373
        • Actis J.A.
        • Honegger J.D.
        • Gates D.H.
        • Petrella A.J.
        • Nolasco L.A.
        • Silverman A.K.
        Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine.
        J. Biomech. 2018; 68 (Feb 8): 107-114
        • Agarwal A.
        • Palepu V.
        • Agarwal A.K.
        • Goel V.K.
        • Yildirim E.D.
        Biomechanical evaluation of an endplate-conformed polycaprolactone-hydroxyapatite intervertebral fusion graft and its comparison with a typical nonconformed cortical graft.
        J. Biomech. Eng. 2013; 135 (Jun): 61005-61009
        • Arjmand N.
        • Plamondon A.
        • Shirazi-Adl A.
        • Parnianpour M.
        • Larivière C.
        Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
        Clin. Biomech. 2012; 27 (Jul): 537-544
        • Arjmand N.
        • Ekrami O.
        • Shirazi-Adl A.
        • Plamondon A.
        • Parnianpour M.
        Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
        J. Biomech. 2013; 46 (May 31): 1454-1462
        • Arshad R.
        • Zander T.
        • Dreischarf M.
        • Schmidt H.
        Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination.
        Med. Eng. Phys. 2016; 38 (Apr): 333-338
        • Arshad R.
        • Zander T.
        • Bashkuev M.
        • Schmidt H.
        Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination.
        Med. Eng. Phys. 2017; 46 (Aug): 54-62
        • Arshad R.
        • Angelini L.
        • Zander T.
        • Di Puccio F.
        • El-Rich M.
        • Schmidt H.
        Spinal loads and trunk muscles forces during level walking - a combined in vivo and in silico study on six subjects.
        J. Biomech. 2018; 70 (Mar 21): 113-123
        • Ayturk U.M.
        • Puttlitz C.M.
        Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine.
        Comput. Methods Biomech. Biomed. Eng. 2011; 14 (Aug): 695-705
        • Azari F.
        • Arjmand N.
        • Shirazi-Adl A.
        • Rahimi-Moghaddam T.
        A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing.
        J. Biomech. 2018; 70 (Mar 21): 157-165
        • Bashkuev M.
        • Reitmaier S.
        • Schmidt H.
        Effect of disc degeneration on the mechanical behavior of the human lumbar spine: a probabilistic finite element study.
        Spine J. 2018; 18 (Oct): 1910-1920
        • Bashkuev M.
        • Reitmaier S.
        • Schmidt H.
        Relationship between intervertebral disc and facet joint degeneration: a probabilistic finite element model study.
        J. Biomech. 2020; 102 (Mar 26): 109518
        • Bassani T.
        • Stucovitz E.
        • Qian Z.
        • Briguglio M.
        • Galbusera F.
        Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level.
        J. Biomech. 2017; 58 (Jun 14): 89-96
        • Bayoglu R.
        • Geeraedts L.
        • Groenen K.H.J.
        • Verdonschot N.
        • Koopman B.
        • Homminga J.
        Twente spine model: a complete and coherent dataset for musculo-skeletal modeling of the lumbar region of the human spine.
        J. Biomech. 2017; 53 (Feb 28): 111-119
        • Bayoglu R.
        • Galibarov P.E.
        • Verdonschot N.
        • Koopman B.
        • Homminga J.
        Twente spine model: a thorough investigation of the spinal loads in a complete and coherent musculoskeletal model of the human spine.
        Med. Eng. Phys. 2019; 68 (Jun): 35-45
        • Beach T.A.C.
        • Frost D.M.
        • Zehr J.D.
        • Howarth S.J.
        • McGill S.M.
        • Callaghan J.P.
        Spine loading during laboratory-simulated fireground operations - inter-individual variation and method of load quantification.
        Ergonomics. 2019; 62 (Nov): 1426-1438
        • Beaucage-Gauvreau E.
        • Robertson W.S.P.
        • Brandon S.C.E.
        • Fraser R.
        • Freeman B.J.C.
        • Graham R.B.
        • Thewlis D.
        • Jones C.F.
        Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks.
        Comput. Methods Biomech. Biomed. Eng. 2019; 22 (Apr): 451-464
        • Benditz A.
        • Auer S.
        • Spörrer J.F.
        • Wolkerstorfer S.
        • Grifka J.
        • Suess F.
        • Dendorfer S.
        Regarding loads after spinal fusion, every level should be seen separately: a musculoskeletal analysis.
        Eur. Spine J. 2018; 27 (Aug): 1905-1910
        • Bruno A.G.
        • Bouxsein M.L.
        • Anderson D.E.
        Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage.
        J. Biomech. Eng. 2015; 137 (Aug. 081003)
        • Campbell J.Q.
        • Petrella A.J.
        An automated method for landmark identification and finite-element modeling of the lumbar spine.
        IEEE Trans. Biomed. Eng. 2015; 62 (Nov): 2709-2716
        • Campbell J.Q.
        • Petrella A.J.
        Automated finite element modeling of the lumbar spine: using a statistical shape model to generate a virtual population of models.
        J. Biomech. 2016; 49 (Sep 6): 2593-2599
        • Campbell J.Q.
        • Coombs D.J.
        • Rao M.
        • Rullkoetter P.J.
        • Petrella A.J.
        Automated finite element meshing of the lumbar spine: verification and validation with 18 specimen-specific models.
        J. Biomech. 2016; 49 (Sep 6): 2669-2676
        • Cannon J.
        • Cambridge E.D.J.
        • McGill S.M.
        Increased core stability is associated with reduced knee valgus during single-leg landing tasks: investigating lumbar spine and hip joint rotational stiffness.
        J. Biomech. 2021; 116 (Feb 12): 110240
        • Castanharo R.
        • Duarte M.
        • McGill S.
        Corrective sitting strategies: an examination of muscle activity and spine loading.
        J. Electromyogr. Kinesiol. 2014; 24 (Feb): 114-119
        • Chen C.S.
        • Shih S.L.
        Biomechanical analysis of a new lumbar interspinous device with optimized topology.
        Med. Biol. Eng. Comput. 2018; 56 (Aug): 1333-1341
        • Chen C.S.
        • Huang C.H.
        • Shih S.L.
        Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device (awesome rod system)--a finite element analysis.
        BMC Musculoskelet. Disord. 2015; 16 (Apr 9): 81
        • Choi K.C.
        • Ryu K.S.
        • Lee S.H.
        • Kim Y.H.
        • Lee S.J.
        • Park C.K.
        Biomechanical comparison of anterior lumbar interbody fusion: stand-alone interbody cage versus interbody cage with pedicle screw fixation -- a finite element analysis.
        BMC Musculoskelet. Disord. 2013; 14 (Jul 26): 220
        • Cholewicki J.
        • McGill S.M.
        Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain.
        Clin. Biomech. 1996; 11 (Jan): 1-15
        • Christophy M.
        • Faruk Senan N.A.
        • Lotz J.C.
        • O’Reilly O.M.
        A musculoskeletal model for the lumbar spine.
        Biomech. Model. Mechanobiol. 2012; 11 (Jan): 19-34
        • Coombs D.J.
        • Rullkoetter P.J.
        • Laz P.J.
        Efficient probabilistic finite element analysis of a lumbar motion segment.
        J. Biomech. 2017; 61 (Aug 16): 65-74
        • Dicko A.
        • Tong-Yette N.
        • Gilles B.
        • Faure F.
        • Palombi O.
        Construction and validation of a hybrid lumbar spine model for the fast evaluation of intradiscal pressure and mobility.
        World Acad. Sci. Eng. Technol. Int. J. Med. Health Biomed. Bioeng. Pharm. Eng. 2015; 9: 139-150
        • Dreischarf M.
        • Rohlmann A.
        • Bergmann G.
        • Zander T.
        Optimised loads for the simulation of axial rotation in the lumbar spine.
        J. Biomech. 2011; 44 (Aug 11): 2323-2327
        • Dreischarf M.
        • Rohlmann A.
        • Bergmann G.
        • Zander T.
        Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine.
        Med. Eng. Phys. 2012; 34 (Jul): 777-780
        • Dreischarf M.
        • Rohlmann A.
        • Zhu R.
        • Schmidt H.
        • Zander T.
        Is it possible to estimate the compressive force in the lumbar spine from intradiscal pressure measurements? A finite element evaluation.
        Med. Eng. Phys. 2013; 35 (Sep): 1385-1390
        • Dreischarf M.
        • Schmidt H.
        • Putzier M.
        • Zander T.
        Biomechanics of the L5-S1 motion segment after total disc replacement - influence of iatrogenic distraction, implant positioning and preoperative disc height on the range of motion and loading of facet joints.
        J. Biomech. 2015; 48 (Sep 18): 3283-3291
        • Dreischarf M.
        • Shirazi-Adl A.
        • Arjmand N.
        • Rohlmann A.
        • Schmidt H.
        Estimation of loads on human lumbar spine: a review of in vivo and computational model studies.
        J. Biomech. 2016; 49 (Apr 11): 833-845
        • Dreischarf M.
        • Zander T.
        • Shirazi-Adl A.
        • Puttlitz C.M.
        • Adam C.J.
        • Chen C.S.
        • Goel V.K.
        • Kiapour A.
        • Kim Y.H.
        • Labus K.M.
        • Little J.P.
        • Park W.M.
        • Wang Y.H.
        • Wilke H.J.
        • Rohlmann A.
        • Schmidt H.
        Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together.
        J. Biomech. 2014; 47: 1757-1766
        • Dufour J.S.
        • Marras W.S.
        • Knapik G.G.
        An EMG-assisted model calibration technique that does not require MVCs.
        J. Electromyogr. Kinesiol. 2013; 23 (Jun): 608-613
        • El Ouaaid Z.
        • Shirazi-Adl A.
        • Arjmand N.
        • Plamondon A.
        Coupled objective function to study the role of abdominal muscle forces in lifting using the kinematics-driven model.
        Comput. Methods Biomech. Biomed. Eng. 2013; 16: 54-65
        • El Ouaaid Z.
        • Shirazi-Adl A.
        • Plamondon A.
        • Larivière C.
        Trunk strength, muscle activity and spinal loads in maximum isometric flexion and extension exertions: a combined in vivo-computational study.
        J. Biomech. 2013; 46 (Sep 3): 2228-2235
        • El Ouaaid Z.
        • Shirazi-Adl A.
        • Plamondon A.
        Effects of variation in external pulling force magnitude, elevation, and orientation on trunk muscle forces, spinal loads and stability.
        J. Biomech. 2016; 49 (Apr 11): 946-952
        • El Ouaaid Z.
        • Shirazi-Adl A.
        • Plamondon A.
        Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.
        J. Biomech. 2018; 70 (Mar 21): 166-174
        • Erbulut D.U.
        • Kiapour A.
        • Oktenoglu T.
        • Ozer A.F.
        • Goel V.K.
        A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw.
        J. Biomech. Eng. 2014; 136 (May. 051007)
        • Faber G.S.
        • Kingma I.
        • van Dieën J.H.
        Effect of initial horizontal object position on peak L5/S1 moments in manual lifting is dependent on task type and familiarity with alternative lifting strategies.
        Ergonomics. 2011; 54 (Jan): 72-81
        • Faizan A.
        • Kiapour A.
        • Kiapour A.M.
        • Goel V.K.
        Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices.
        J. Spinal Disord. Tech. 2014; 27 (Jun): E118-E127
        • Favier C.D.
        • Finnegan M.E.
        • Quest R.A.
        • Honeyfield L.
        • McGregor A.H.
        • Phillips A.T.M.
        An open-source musculoskeletal model of the lumbar spine and lower limbs: a validation for movements of the lumbar spine.
        Comput. Methods Biomech. Biomed. Eng. 2021; 24 (Sep): 1310-1325
        • Ferguson S.A.
        • Marras W.S.
        • Gary Allread W.
        • Knapik G.G.
        • Vandlen K.A.
        • Splittstoesser R.E.
        • Yang G.
        Musculoskeletal disorder risk as a function of vehicle rotation angle during assembly tasks.
        Appl. Ergon. 2011; 42 (Jul): 699-709
        • Ferguson S.A.
        • Marras W.S.
        • Allread W.G.
        • Knapik G.G.
        • Splittstoesser R.E.
        Musculoskeletal disorder risk during automotive assembly: current vs. seated.
        Appl. Ergon. 2012; 43 (Jul): 671-678
        • Gagnon D.
        • Arjmand N.
        • Plamondon A.
        • Shirazi-Adl A.
        • Larivière C.
        An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine.
        J. Biomech. 2011; 44 (May 17): 1521-1529
        • Gagnon D.
        • Plamondon A.
        • Larivière C.
        A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine.
        J. Biomech. 2016; 49 (Sep 6): 2938-2945
        • Gagnon D.
        • Plamondon A.
        • Larivière C.
        A comparison of lumbar spine and muscle loading between male and female workers during box transfers.
        J. Biomech. 2018; 81 (Nov 16): 76-85
        • Galbusera F.
        • Bellini C.M.
        • Anasetti F.
        • Ciavarro C.
        • Lovi A.
        • Brayda-Bruno M.
        Rigid and flexible spinal stabilization devices: a biomechanical comparison.
        Med. Eng. Phys. 2011; 33 (May): 490-496
        • Ghezelbash F.
        • Arjmand N.
        • Shirazi-Adl A.
        Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability.
        Comput. Methods Biomech. Biomed. Eng. 2015; 18: 1760-1767
        • Ghezelbash F.
        • Shirazi-Adl A.
        • Arjmand N.
        • El-Ouaaid Z.
        • Plamondon A.
        Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation.
        Biomech. Model. Mechanobiol. 2016; 15 (Dec): 1699-1712
        • Ghezelbash F.
        • Shirazi-Adl A.
        • Arjmand N.
        • El-Ouaaid Z.
        • Plamondon A.
        • Meakin J.R.
        Effects of sex, age, body height and body weight on spinal loads: sensitivity analyses in a subject-specific trunk musculoskeletal model.
        J. Biomech. 2016; 49 (Oct 3): 3492-3501
        • Ghezelbash F.
        • El Ouaaid Z.
        • Shirazi-Adl A.
        • Plamondon A.
        • Arjmand N.
        Trunk musculoskeletal response in maximum voluntary exertions: a combined measurement-modeling investigation.
        J. Biomech. 2018; 70 (Mar 21): 124-133
        • Ghezelbash F.
        • Schmidt H.
        • Shirazi-Adl A.
        • El-Rich M.
        Internal load-sharing in the human passive lumbar spine: review of in vitro and finite element model studies.
        J. Biomech. 2020; 102 (Mar 26): 109441
        • Ghezelbash F.
        • Shirazi-Adl A.
        • El Ouaaid Z.
        • Plamondon A.
        • Arjmand N.
        Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting.
        J. Biomech. 2020; 102 (Mar 26): 109550
        • Ghezelbash F.
        • Shirazi-Adl A.
        • Plamondon A.
        • Arjmand N.
        Comparison of different lifting analysis tools in estimating lower spinal loads - evaluation of NIOSH criterion.
        J. Biomech. 2020; 112 (Nov 9): 110024
        • Gooyers C.E.
        • Beach T.A.C.
        • Frost D.M.
        • Howarth S.J.
        • Callaghan J.P.
        Identifying interactive effects of task demands in lifting on estimates of in vivo low back joint loads.
        Appl. Ergon. 2018; 67 (Feb): 203-210
        • Granata K.P.
        • Marras W.S.
        An EMG-assisted model of trunk loading during free-dynamic lifting.
        J. Biomech. 1995; 28 (Nov): 1309-1317
        • Guo J.
        • Guo W.
        • Ren G.
        Embodiment of intra-abdominal pressure in a flexible multibody model of the trunk and the spinal unloading effects during static lifting tasks.
        Biomech. Model. Mechanobiol. 2021; 20 (Aug): 1599-1626
        • Hajihosseinali M.
        • Arjmand N.
        • Shirazi-Adl A.
        • Farahmand F.
        • Ghiasi M.S.
        A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces.
        Med. Eng. Phys. 2014; 36 (Oct): 1296-1304
        • Hajihosseinali M.
        • Arjmand N.
        • Shirazi-Adl A.
        Effect of body weight on spinal loads in various activities: a personalized biomechanical modeling approach.
        J. Biomech. 2015; 48 (Jan 21): 276-282
        • Hamidrad S.
        • Abdollahi M.
        • Badali V.
        • Nikkhoo M.
        • Naserkhaki S.
        Biomechanical modeling of spinal ligaments: finite element analysis of L4-L5 spinal segment.
        Comput. Methods Biomech. Biomed. Eng. 2021; 24 (Dec): 1807-1818
        • Han K.S.
        • Zander T.
        • Taylor W.R.
        • Rohlmann A.
        An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces.
        Med. Eng. Phys. 2012; 34 (Jul): 709-716
        • Han K.S.
        • Rohlmann A.
        • Zander T.
        • Taylor W.R.
        Lumbar spinal loads vary with body height and weight.
        Med. Eng. Phys. 2013; 35 (Jul): 969-977
        • Holzapfel G.A.
        • Stadler M.
        Role of facet curvature for accurate vertebral facet load analysis.
        Eur. Spine J. 2006; 15 (Jun): 849-856
        • Honegger J.D.
        • Actis J.A.
        • Gates D.H.
        • Silverman A.K.
        • Munson A.H.
        • Petrella A.J.
        Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand.
        Biomech. Model. Mechanobiol. 2021; 20 (Feb): 339-358
        • Huynh K.T.
        • Gibson I.
        • Jagdish B.N.
        • Lu W.F.
        Development and validation of a discretised multi-body spine model in LifeMOD for biodynamic behaviour simulation.
        Comput. Methods Biomech. Biomed. Eng. 2015; 18: 175-184
        • Hwang J.
        • Knapik G.G.
        • Dufour J.S.
        • Aurand A.
        • Best T.M.
        • Khan S.N.
        • Mendel E.
        • Marras W.S.
        A biologically-assisted curved muscle model of the lumbar spine: model structure.
        Clin. Biomech. 2016; 37 (Aug): 53-59
        • Hwang J.
        • Knapik G.G.
        • Dufour J.S.
        • Best T.M.
        • Khan S.N.
        • Mendel E.
        • Marras W.S.
        A biologically-assisted curved muscle model of the lumbar spine: model validation.
        Clin. Biomech. 2016; 37 (Aug): 153-159
        • Hwang J.
        • Knapik G.G.
        • Dufour J.S.
        • Best T.M.
        • Khan S.N.
        • Mendel E.
        • Marras W.S.
        Validation of a personalized curved muscle model of the lumbar spine during complex dynamic exertions.
        J. Electromyogr. Kinesiol. 2017; 33 (Apr): 1-9
        • Ignasiak D.
        • Dendorfer S.
        • Ferguson S.J.
        Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.
        J. Biomech. 2016; 49 (Apr 11): 959-966
        • Ignasiak D.
        • Ferguson S.J.
        • Arjmand N.
        A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels.
        J. Biomech. 2016; 49 (Sep 6): 3074-3078
        • Ignasiak D.
        • Rüeger A.
        • Sperr R.
        • Ferguson S.J.
        Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living.
        J. Biomech. 2018; 70 (Mar 21): 175-184
        • Ikeda D.M.
        • McGill S.M.
        Can altering motions, postures, and loads provide immediate low back pain relief: a study of 4 cases investigating spine load, posture, and stability.
        Spine (Phila Pa 1976). 2012; 37 (Nov 1): E1469-E1475
        • Jones A.C.
        • Wilcox R.K.
        Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis.
        Med. Eng. Phys. 2008; 30 (Dec): 1287-1304
        • Joukar A.
        • Shah A.
        • Kiapour A.
        • Vosoughi A.S.
        • Duhon B.
        • Agarwal A.K.
        • Elgafy H.
        • Ebraheim N.
        • Goel V.K.
        Sex specific sacroiliac joint biomechanics during standing upright: a finite element study.
        Spine (Phila Pa 1976). 2018; 43 (Sep 15): E1053-E1060
        • Khoddam-Khorasani P.
        • Arjmand N.
        • Shirazi-Adl A.
        Trunk hybrid passive-active musculoskeletal modeling to determine the detailed T12-S1 response under in vivo loads.
        Ann. Biomed. Eng. 2018; 46 (Nov): 1830-1843
        • Khoddam-Khorasani P.
        • Arjmand N.
        • Shirazi-Adl A.
        Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: a combined in vivo, musculoskeletal, and finite element model study.
        J. Biomech. 2020; 104 (May 7): 109728
        • Kiapour A.
        • Ambati D.
        • Hoy R.W.
        • Goel V.K.
        Effect of graded facetectomy on biomechanics of Dynesys dynamic stabilization system.
        Spine (Phila Pa 1976). 2012; 37 (May 1): E581-E589
        • Kiapour A.
        • Anderson D.G.
        • Spenciner D.B.
        • Ferrara L.
        • Goel V.K.
        Kinematic effects of a pedicle-lengthening osteotomy for the treatment of lumbar spinal stenosis.
        J. Neurosurg. Spine. 2012; 17 (Oct): 314-320
        • Kim H.K.
        • Zhang Y.
        Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.
        Ergonomics. 2017; 60 (Apr): 563-576
        • Kim H.J.
        • Chun H.J.
        • Lee H.M.
        • Kang K.T.
        • Lee C.K.
        • Chang B.S.
        • Yeom J.S.
        The biomechanical influence of the facet joint orientation and the facet tropism in the lumbar spine.
        Spine J. 2013; 13 (Oct): 1301-1308
        • Kim H.J.
        • Kang K.T.
        • Son J.
        • Lee C.K.
        • Chang B.S.
        • Yeom J.S.
        The influence of facet joint orientation and tropism on the stress at the adjacent segment after lumbar fusion surgery: a biomechanical analysis.
        Spine J. 2015; 15 (Aug 1): 1841-1847
        • Kingma I.
        • Faber G.S.
        • van Dieën J.H.
        Supporting the upper body with the hand on the thigh reduces back loading during lifting.
        J. Biomech. 2016; 49 (Apr 11): 881-889
        • Knapik G.G.
        • Mendel E.
        • Marras W.S.
        Use of a personalized hybrid biomechanical model to assess change in lumbar spine function with a TDR compared to an intact spine.
        Eur. Spine J. 2012; 21 (Jun): S641-S652
        • Koopman A.S.
        • Toxiri S.
        • Power V.
        • Kingma I.
        • van Dieën J.H.
        • Ortiz J.
        • de Looze M.P.
        The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting.
        J. Biomech. 2019; 91 (Jun 25): 14-22
        • Kuai S.
        • Zhou W.
        • Liao Z.
        • Ji R.
        • Guo D.
        • Zhang R.
        • Liu W.
        Influences of lumbar disc herniation on the kinematics in multi-segmental spine, pelvis, and lower extremities during five activities of daily living.
        BMC Musculoskelet. Disord. 2017; 18 (May 25): 216
        • Kumaran Y.
        • Shah A.
        • Katragadda A.
        • Padgaonkar A.
        • Zavatsky J.
        • McGuire R.
        • Serhan H.
        • Elgafy H.
        • Goel V.K.
        Iatrogenic muscle damage in transforaminal lumbar interbody fusion and adjacent segment degeneration: a comparative finite element analysis of open and minimally invasive surgeries.
        Eur. Spine J. 2021; 30 (Sep): 2622-2630
        • Lavaste F.
        • Skalli W.
        • Robin S.
        • Roy-Camille R.
        • Mazel C.
        Three-dimensional geometrical and mechanical modelling of the lumbar spine.
        J. Biomech. 1992; 25 (Oct): 1153-1164
        • Lavender S.A.
        • Sommerich C.M.
        • Bigelow S.
        • Weston E.B.
        • Seagren K.
        • Pay N.A.
        • Sillars D.
        • Ramachandran V.
        • Sun C.
        • Xu Y.
        • Marras W.S.
        A biomechanical evaluation of potential ergonomic solutions for use by firefighter and EMS providers when lifting heavy patients in their homes.
        Appl. Ergon. 2020; 82 (Jan): 102910
        • Le P.
        • Marras W.S.
        Evaluating the low back biomechanics of three different office workstations: seated, standing, and perching.
        Appl. Ergon. 2016; 56 (Sep): 170-178
        • Le P.
        • Dufour J.
        • Monat H.
        • Rose J.
        • Huber Z.
        • Alder E.
        • Radin Umar R.Z.
        • Hennessey B.
        • Dutt M.
        • Marras W.S.
        Association between spinal loads and the psychophysical determination of maximum acceptable force during pushing tasks.
        Ergonomics. 2012; 55: 1104-1114
        • Li S.S.W.
        • Chow D.H.K.
        Effects of backpack load on critical changes of trunk muscle activation and lumbar spine loading during walking.
        Ergonomics. 2018; 61 (Apr): 553-565
        • Li S.S.
        • Chow D.H.
        Modified electromyography-assisted optimization approach for predicting lumbar spine loading while walking with backpack loads.
        Proc. Inst. Mech. Eng. H. 2020; 234 (May): 527-533
        • Li S.S.W.
        • Chow D.H.K.
        Comparison of predictions between an EMG-assisted approach and two optimization-driven approaches for lumbar spine loading during walking with backpack loads.
        Hum. Factors. 2020; 62 (Jun): 565-577
        • Lin H.M.
        • Pan Y.N.
        • Liu C.L.
        • Huang L.Y.
        • Huang C.H.
        • Chen C.S.
        Biomechanical comparison of the K-ROD and Dynesys dynamic spinal fixator systems - a finite element analysis.
        Biomed. Mater. Eng. 2013; 23: 495-505
        • Lindsey D.P.
        • Kiapour A.
        • Yerby S.A.
        • Goel V.K.
        Sacroiliac joint fusion minimally affects adjacent lumbar segment motion: a finite element study.
        Int. J. Spine Surg. 2015; 9 (Nov 13): 64
        • Lindsey D.P.
        • Kiapour A.
        • Yerby S.A.
        • Goel V.K.
        Sacroiliac joint stability: finite element analysis of implant number, orientation, and superior implant length.
        World J. Orthop. 2018; 9 (Mar 18): 14-23
        • Little J.P.
        • Adam C.J.
        Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks.
        Comput. Methods Biomech. Biomed. Eng. 2015; 18: 676-688
        • Liu C.L.
        • Zhong Z.C.
        • Hsu H.W.
        • Shih S.L.
        • Wang S.T.
        • Hung C.
        • Chen C.S.
        Effect of the cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis.
        Eur. Spine J. 2011; 20 (Nov): 1850-1858
        • Liu T.
        • Khalaf K.
        • Naserkhaki S.
        • El-Rich M.
        Load-sharing in the lumbosacral spine in neutral standing & flexed postures - a combined finite element and inverse static study.
        J. Biomech. 2018; 70 (Mar 21): 43-50
        • Liu T.
        • Khalaf K.
        • Adeeb S.
        • El-Rich M.
        Numerical investigation of intra-abdominal pressure effects on spinal loads and load-sharing in forward flexion.
        Front. Bioeng. Biotechnol. 2019; 7 (Dec 17): 428
        • Lo H.J.
        • Chen C.S.
        • Chen H.M.
        • Yang S.W.
        Application of an interspinous process device after minimally invasive lumbar decompression could lead to stress redistribution at the pars interarticularis: a finite element analysis.
        BMC Musculoskelet. Disord. 2019; 20 (May 15): 213
        • Malakoutian M.
        • Street J.
        • Wilke H.J.
        • Stavness I.
        • Dvorak M.
        • Fels S.
        • Oxland T.
        Role of muscle damage on loading at the level adjacent to a lumbar spine fusion: a biomechanical analysis.
        Eur. Spine J. 2016; 25 (Sep): 2929-2937
        • Malakoutian M.
        • Street J.
        • Wilke H.-J.
        • Stavness I.
        • Fels S.
        • Oxland T.
        A musculoskeletal model of the lumbar spine using ArtiSynth—development and validation.
        Comput. Methods Biomech. Biomed. Eng. Imag. Vis. 2016; 6: 483-490
        • Marras W.S.
        • King A.I.
        • Joynt R.L.
        Measurement of loads on the lumbar spine under isometric and isokinetic conditions.
        Spine (Phila Pa 1976). 1984; 9 (Mar): 176-187
        • Marras W.S.
        • Lavender S.A.
        • Leurgans S.E.
        • Rajulu S.L.
        • Allread W.G.
        • Fathallah F.A.
        • Ferguson S.A.
        The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders. The effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury.
        Spine (Phila Pa 1976). 1993; 18 (Apr): 617-628
        • Marras W.S.
        • Parnianpour M.
        • Ferguson S.A.
        • Kim J.Y.
        • Crowell R.R.
        • Simon S.R.
        Quantification and classification of low back disorders based on trunk motion.
        Eur. J. Phys. Med. Vienna Phys. Med. Award. 1993; 3: 218-235
        • Marras W.S.
        • Davis K.G.
        • Heaney C.A.
        • Maronitis A.B.
        • Allread W.G.
        The influence of psychosocial stress, gender, and personality on mechanical loading of the lumbar spine.
        Spine (Phila Pa 1976). 2000; 25 (Dec 1): 3045-3054
        • Marras W.S.
        • Davis K.G.
        • Ferguson S.A.
        • Lucas B.R.
        • Gupta P.
        Spine loading characteristics of patients with low back pain compared with asymptomatic individuals.
        Spine (Phila Pa 1976). 2001; 26 (Dec 1): 2566-2574
        • McGill S.M.
        • Marshall L.
        • Andersen J.
        Low back loads while walking and carrying: comparing the load carried in one hand or in both hands.
        Ergonomics. 2013; 56: 293-302
        • McGill S.M.
        • Cannon J.
        • Andersen J.T.
        Muscle activity and spine load during pulling exercises: influence of stable and labile contact surfaces and technique coaching.
        J. Electromyogr. Kinesiol. 2014; 24 (Oct): 652-665
        • Meijer G.J.
        • Homminga J.
        • Hekman E.E.
        • Veldhuizen A.G.
        • Verkerke G.J.
        The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment.
        J. Biomech. 2010; 43 (May 28): 1590-1597
        • Meijer G.J.
        • Homminga J.
        • Veldhuizen A.G.
        • Verkerke G.J.
        Influence of interpersonal geometrical variation on spinal motion segment stiffness: implications for patient-specific modeling.
        Spine (Phila Pa 1976). 2011; 36 (Jun 15): E929-E935
        • Mirakhorlo M.
        • Azghani M.R.
        • Kahrizi S.
        Validation of a musculoskeletal model of lifting and its application for biomechanical evaluation of lifting techniques.
        J. Res. Health Sci. 2014; 14 (Winter): 23-28
        • Mohammadi Y.
        • Arjmand N.
        • Shirazi-Adl A.
        Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches.
        Med. Eng. Phys. 2015; 37 (Aug): 792-800
        • Molinaro D.D.
        • King A.S.
        • Young A.J.
        Biomechanical analysis of common solid waste collection throwing techniques using OpenSim and an EMG-assisted solver.
        J. Biomech. 2020; 104 (May 7): 109704
        • Mörl F.
        • Günther M.
        • Riede J.M.
        • Hammer M.
        • Schmitt S.
        Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.
        Biomech. Model. Mechanobiol. 2020; 19 (Dec): 2015-2047
        • Naserkhaki S.
        • Jaremko J.L.
        • Adeeb S.
        • El-Rich M.
        On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: finite element study.
        J. Biomech. 2016; 49 (Apr 11): 974-982
        • Naserkhaki S.
        • Jaremko J.L.
        • El-Rich M.
        Effects of inter-individual lumbar spine geometry variation on load-sharing: geometrically personalized finite element study.
        J. Biomech. 2016; 49 (Sep 6): 2909-2917
        • Naserkhaki S.
        • Arjmand N.
        • Shirazi-Adl A.
        • Farahmand F.
        • El-Rich M.
        Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model.
        J. Biomech. 2018; 70 (Mar 21): 33-42
        • Natarajan R.N.
        • Andersson G.B.
        The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading.
        Spine (Phila Pa 1976). 1999; 24 (Sep 15): 1873-1881
        • Natarajan R.N.
        • Watanabe K.
        • Hasegawa K.
        Biomechanical analysis of a long-segment fusion in a lumbar spine-a finite element model study.
        J. Biomech. Eng. 2018; 140 (Sep 1)
        • Niemeyer F.
        • Wilke H.J.
        • Schmidt H.
        Geometry strongly influences the response of numerical models of the lumbar spine--a probabilistic finite element analysis.
        J. Biomech. 2012; 45 (May 11): 1414-1423
        • Nikkhoo M.
        • Khoz Z.
        • Cheng C.H.
        • Niu C.C.
        • El-Rich M.
        • Khalaf K.
        Development of a novel geometrically-parametric patient-specific finite element model to investigate the effects of the lumbar lordosis angle on fusion surgery.
        J. Biomech. 2020; 102 (Mar 26): 109722
        • Nimbarte A.D.
        • Sun Y.
        • Jaridi M.
        • Hsiao H.
        Biomechanical loading of the shoulder complex and lumbosacral joints during dynamic cart pushing task.
        Appl. Ergon. 2013; 44 (Sep): 841-849
        • Ning X.
        • Jin S.
        • Mirka G.A.
        Describing the active region boundary of EMG-assisted biomechanical models of the low back.
        Clin. Biomech. 2012; 27 (Jun): 422-427
        • Oktenoglu T.
        • Erbulut D.U.
        • Kiapour A.
        • Ozer A.F.
        • Lazoglu I.
        • Kaner T.
        • Sasani M.
        • Goel V.K.
        Pedicle screw-based posterior dynamic stabilisation of the lumbar spine: in vitro cadaver investigation and a finite element study.
        Comput. Methods Biomech. Biomed. Eng. 2015; 18 (Aug): 1252-1261
        • O’Reilly M.A.
        • Whyne C.M.
        Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.
        Spine (Phila Pa 1976). 2008; 33 (Aug 1): 1876-1881
        • Panjabi M.M.
        • Goel V.
        • Oxland T.
        • Takata K.
        • Duranceau J.
        • Krag M.
        • Price M.
        Human lumbar vertebrae. Quantitative three-dimensional anatomy.
        Spine (Phila Pa 1976). 1992; 17 (Mar): 299-306
        • Panjabi M.M.
        • Oxland T.
        • Takata K.
        • Goel V.
        • Duranceau J.
        • Krag M.
        Articular facets of the human spine. Quantitative three-dimensional anatomy.
        Spine (Phila Pa 1976). 1993; 18 (Aug): 1298-1310
        • Park W.M.
        • Wang S.
        • Kim Y.H.
        • Wood K.B.
        • Sim J.A.
        • Li G.
        Effect of the intra-abdominal pressure and the center of segmental body mass on the lumbar spine mechanics - a computational parametric study.
        J. Biomech. Eng. 2012; 134 (Jan. 011009)
        • Park W.M.
        • Kim K.
        • Kim Y.H.
        Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine.
        Comput. Biol. Med. 2013; 43 (Sep): 1234-1240
        • Park W.M.
        • Kim Y.J.
        • Wang S.B.
        • Kim Y.H.
        • Li G.A.
        Investigation of lumbar spine biomechanics using global convergence optimization and constant loading path methods.
        Math. Biosci. Eng. 2020; 17 (Mar 31): 2970-2983
        • Parkinson R.J.
        • Bezaire M.
        • Callaghan J.P.
        A comparison of low back kinetic estimates obtained through posture matching, rigid link modeling and an EMG-assisted model.
        Appl. Ergon. 2011; 42 (Jul): 644-651
        • Picchiotti M.T.
        • Weston E.B.
        • Knapik G.G.
        • Dufour J.S.
        • Marras W.S.
        Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine.
        Appl. Ergon. 2019; 75 (Feb): 1-7
        • Plamondon A.
        • Delisle A.
        • Bellefeuille S.
        • Denis D.
        • Gagnon D.
        • Larivière C.
        • IRSST MMH Research Group
        Lifting strategies of expert and novice workers during a repetitive palletizing task.
        Appl. Ergon. 2014; 45 (May): 471-481
        • Plamondon A.
        • Larivière C.
        • Denis D.
        • St-Vincent M.
        • Delisle A.
        • IRSST MMH Research Group
        Sex differences in lifting strategies during a repetitive palletizing task.
        Appl. Ergon. 2014; 45 (Nov): 1558-1569
        • Plamondon A.
        • Larivière C.
        • Denis D.
        • Mecheri H.
        Nastasia I; IRSST MMH research group. Difference between male and female workers lifting the same relative load when palletizing boxes.
        Appl. Ergon. 2017; 60 (Apr): 93-102
        • Putzer M.
        • Ehrlich I.
        • Rasmussen J.
        • Gebbeken N.
        • Dendorfer S.
        Sensitivity of lumbar spine loading to anatomical parameters.
        J. Biomech. 2016; 49 (Apr 11): 953-958
        • Raabe M.E.
        • Chaudhari A.M.W.
        An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation.
        J. Biomech. 2016; 49 (May 3): 1238-1243
        • Raabe M.E.
        • Chaudhari A.M.W.
        Biomechanical consequences of running with deep core muscle weakness.
        J. Biomech. 2018; 67 (Jan 23): 98-105
        • Rajaee M.A.
        • Arjmand N.
        • Shirazi-Adl A.
        A novel coupled musculoskeletal finite element model of the spine - critical evaluation of trunk models in some tasks.
        J. Biomech. 2021; 119 (Apr 15): 110331
        • Rajaee M.A.
        • Arjmand N.
        • Shirazi-Adl A.
        • Plamondon A.
        • Schmidt H.
        Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities.
        Appl. Ergon. 2015; 48: 22-32
        • Remus R.
        • Lipphaus A.
        • Neumann M.
        • Bender B.
        Calibration and validation of a novel hybrid model of the lumbosacral spine in ArtiSynth-the passive structures.
        PLoS One. 2021; 16 (Apr 26. e0250456)
        • Robin S.
        • Skalli W.
        • Lavaste F.
        Influence of geometrical factors on the behavior of lumbar spine segments: a finite element analysis.
        Eur. Spine J. 1994; 3: 84-90
        • Rose J.D.
        • Mendel E.
        • Marras W.S.
        Carrying and spine loading.
        Ergonomics. 2013; 56: 1722-1732
        • Rupp T.K.
        • Ehlers W.
        • Karajan N.
        • Günther M.
        • Schmitt S.
        A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles.
        Biomech. Model. Mechanobiol. 2015; 14 (Oct): 1081-1105
        • Samadi S.
        • Arjmand N.
        A novel stability-based EMG-assisted optimization method for the spine.
        Med. Eng. Phys. 2018; S1350-4533 (Jun 23): 30091-30092
        • Schmidt H.
        • Galbusera F.
        • Rohlmann A.
        • Zander T.
        • Wilke H.J.
        Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis.
        Eur. Spine J. 2012; 21 (Jun): S663-S674
        • Senteler M.
        • Weisse B.
        • Snedeker J.G.
        • Rothenfluh D.A.
        Pelvic incidence-lumbar lordosis mismatch results in increased segmental joint loads in the unfused and fused lumbar spine.
        Eur. Spine J. 2014; 23 (Jul): 1384-1393
        • Senteler M.
        • Weisse B.
        • Rothenfluh D.A.
        • Snedeker J.G.
        Intervertebral reaction force prediction using an enhanced assembly of OpenSim models.
        Comput. Methods Biomech. Biomed. Eng. 2016; 19: 538-548
        • Senteler M.
        • Weisse B.
        • Rothenfluh D.A.
        • Farshad M.T.
        • Snedeker J.G.
        Fusion angle affects intervertebral adjacent spinal segment joint forces-model-based analysis of patient specific alignment.
        J. Orthop. Res. 2017; 35 (Jan): 131-139
        • Senteler M.
        • Aiyangar A.
        • Weisse B.
        • Farshad M.
        • Snedeker J.G.
        Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path.
        J. Biomech. 2018; 70 (Mar 21): 140-148
        • Seyed Vosoughi A.
        • Joukar A.
        • Kiapour A.
        • Parajuli D.
        • Agarwal A.K.
        • Goel V.K.
        • Zavatsky J.
        Optimal satellite rod constructs to mitigate rod failure following pedicle subtraction osteotomy (PSO): a finite element study.
        Spine J. 2019; 19 (May): 931-941
        • Shahvarpour A.
        • Shirazi-Adl A.
        • Larivière C.
        Active-passive biodynamics of the human trunk when seated on a wobble chair.
        J. Biomech. 2016; 49: 939-945
        • Sharabi M.
        • Levi-Sasson A.
        • Wolfson R.
        • Wade K.R.
        • Galbusera F.
        • Benayahu D.
        • Wilke H.J.
        • Haj-Ali R.
        The mechanical role of the radial fibers network within the annulus fibrosus of the lumbar intervertebral disc: a finite elements study.
        J. Biomech. Eng. 2018; 141 (Oct 22): 021006
        • Shih S.L.
        • Chen C.S.
        • Lin H.M.
        • Huang L.Y.
        • Liu C.L.
        • Huang C.H.
        • Cheng C.K.
        Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis.
        J. Spinal Disord. Tech. 2012; 25: E140-149
        • Sohn S.
        • Park T.H.
        • Chung C.K.
        • Kim Y.J.
        • Jang J.W.
        • Han I.B.
        • Lee S.J.
        Biomechanical characterization of three iliac screw fixation techniques: a finite element study.
        J. Clin. Neurosci. 2018; 52 (Jun): 109-114
        • Song C.
        • Li X.F.
        • Liu Z.D.
        • Zhong G.B.
        Biomechanical assessment of a novel L4/5 level interspinous implant using three dimensional finite element analysis.
        Eur. Rev. Med. Pharmacol. Sci. 2014; 18: 86-94
        • Splittstoesser R.E.
        • Marras W.S.
        • Best T.M.
        Immune responses to low back pain risk factors.
        Work. 2012; 41: 6016-6023
        • Wang W.
        • Wang D.
        • De Groote F.
        • Scheys L.
        • Jonkers I.
        Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine.
        J. Biomech. 2020; 98 (Jan 2): 109437
        • Weisse B.
        • Aiyangar A.K.
        • Affolter Ch.
        • Gander R.
        • Terrasi G.P.
        • Ploeg H.
        Determination of the translational and rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model.
        J. Mech. Behav. Biomed. Mater. 2012; 13 (Sep): 45-61
        • Weston E.B.
        • Khan S.N.
        • Marras W.S.
        Wheelchair pushing and turning: lumbar spine and shoulder loads and recommended limits.
        Ergonomics. 2017; 60 (Dec): 1754-1765
        • Weston E.B.
        • Alizadeh M.
        • Knapik G.G.
        • Wang X.
        • Marras W.S.
        Biomechanical evaluation of exoskeleton use on loading of the lumbar spine.
        Appl. Ergon. 2018; 68 (Apr): 101-108
        • Weston E.B.
        • Aurand A.
        • Dufour J.S.
        • Knapik G.G.
        • Marras W.S.
        Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.
        Ergonomics. 2018; 61 (Jun): 853-865
        • Weston E.B.
        • Aurand A.M.
        • Dufour J.S.
        • Knapik G.G.
        • Marras W.S.
        One versus two-handed lifting and lowering: lumbar spine loads and recommended one-handed limits protecting the lower back.
        Ergonomics. 2020; 63 (Apr): 505-521
        • Weston E.B.
        • Dufour J.S.
        • Lu M.L.
        • Marras W.S.
        Spinal loading and lift style in confined vertical space.
        Appl. Ergon. 2020; 84 (Apr): 103021
        • Woldtvedt D.J.
        • Womack W.
        • Gadomski B.C.
        • Schuldt D.
        • Puttlitz C.M.
        Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size.
        J. Biomech. Eng. 2011; 133 (Jun. 061009)
        • Yang G.
        • Marras W.S.
        • Best T.M.
        The biochemical response to biomechanical tissue loading on the low back during physical work exposure.
        Clin. Biomech. 2011; 26 (Jun): 431-437
        • Zander T.
        • Dreischarf M.
        • Schmidt H.
        • Bergmann G.
        • Rohlmann A.
        Spinal loads as influenced by external loads: a combined in vivo and in silico investigation.
        J. Biomech. 2015; 48 (Feb 26): 578-584
        • Zander T.
        • Dreischarf M.
        • Timm A.K.
        • Baumann W.W.
        • Schmidt H.
        Impact of material and morphological parameters on the mechanical response of the lumbar spine - a finite element sensitivity study.
        J. Biomech. 2017; 53 (Feb 28): 185-190
        • Zhang H.
        • Zhu W.
        The path to deliver the most realistic follower load for a lumbar spine in standing posture: a finite element study.
        J. Biomech. Eng. 2019; 141 (Jan 7): 031010
        • Zhu Y.
        • Weston E.B.
        • Mehta R.K.
        • Marras W.S.
        Neural and biomechanical tradeoffs associated with human-exoskeleton interactions.
        Appl. Ergon. 2021; 96 (Oct): 103494
        • Zwambag D.P.
        • Brown S.H.M.
        Experimental validation of a novel spine model demonstrates the large contribution of passive muscle to the flexion relaxation phenomenon.
        J. Biomech. 2020; 102 (Mar 26): 109431