Advertisement

Evaluation of assumptions in foot and ankle biomechanical models

      Highlights

      • Assumptions about material properties and loading conditions are inherent in a model.
      • Choice of modeling assumptions has a significant impact on the results of a model.
      • Choice of boundary conditions is especially important in simulating foot deformities.

      Abstract

      Background

      A variety of biomechanical models have been used in studies of foot and ankle disorders. Assumptions about the element types, material properties, and loading and boundary conditions are inherent in every model. It was hypothesized that the choice of these modeling assumptions could have a significant impact on the findings of the model.

      Methods

      We investigated the assumptions made in a number of biomechanical models of the foot and ankle and evaluated their effects on the results of the studies. Specifically, we focused on: (1) element choice for simulation of ligaments and tendons, (2) material properties of ligaments, cortical and trabecular bones, and encapsulating soft tissue, (3) loading and boundary conditions of the tibia, fibula, tendons, and ground support.

      Findings

      Our principal findings are: (1) the use of isotropic solid elements to model ligaments and tendons is not appropriate because it allows them to transmit unrealistic bending and twisting moments and compressive forces; (2) ignoring the difference in elastic modulus between cortical and trabecular bones creates non-physiological stress distribution in the bones; (3) over-constraining tibial motion prevents anticipated deformity within the foot when simulating foot deformities, such as progressive collapsing foot deformity; (4) neglecting the Achilles tendon force affects almost all kinetic and kinematic parameters through the foot; (5) the axial force applied to the tibia and fibula is not equal to the ground reaction force due to the presence of tendon forces.

      Interpretation

      The predicted outcomes of a foot model are highly sensitive to the model assumptions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akrami M.
        • Qian Z.
        • Zou Z.
        • Howard D.
        • Nester C.J.
        • Ren L.
        Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions.
        Biomech. Model. Mechanobiol. 2018; 17: 559-576
        • Altai Z.
        • Qasim M.
        • Li X.
        • Viceconti M.
        The effect of boundary and loading conditions on patient classification using finite element predicted risk of fracture.
        Clin. Biomech. 2019; 68: 137-143
        • Basmajian J.V.
        • Stecko G.
        The role of muscles in arch support of the foot.
        J. Bone Joint Surg. Am. 1963; 45: 1184-1190
        • Beaudoin A.J.
        • Fiore S.M.
        • Krause W.R.
        • Adelaar R.S.
        Effect of isolated talocalcaneal fusion on contact in the ankle and talonavicular joints.
        Foot Ankle. 1991; 12: 19-25
        • Behforootan S.
        • Chatzistergos P.
        • Naemi R.
        • Chockalingam N.
        Finite element modelling of the foot for clinical application: a systematic review.
        Med. Eng. Phys. 2017; 39: 1-11
        • Benjamin M.
        • Ralphs J.R.
        Fibrocartilage in tendons and ligaments--an adaptation to compressive load.
        J. Anat. 1998; 193: 481-494
        • Bray R.
        Blood supply of ligaments: a brief overview.
        Orthopaedics. 1995; 3: 39-48
        • Campbell S.T.
        • Reese K.A.
        • Ross S.D.
        • McGarry M.H.
        • Leba T.B.
        • Lee T.Q.
        Effect of graft shape in lateral column lengthening on tarsal bone position and subtalar and talonavicular contact pressure in a cadaveric flatfoot model.
        Foot Ankle Int. 2014; 35: 1200-1208
        • Chu T.M.
        • Reddy N.P.
        • Padovan J.
        Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis.
        Med. Eng. Phys. 1995; 17: 372-379
        • Chu I.-T.
        • Myerson M.S.
        • Nyska M.
        • Parks B.G.
        Experimental flatfoot model: the contribution of dynamic loading.
        Foot Ankle Int. 2001; 22: 220-225
        • Cifuentes-De la Portilla C.
        • Larrainzar-Garijo R.
        • Bayod J.
        Biomechanical stress analysis of the main soft tissues associated with the development of adult acquired flatfoot deformity.
        Clin. Biomech. 2019; 61: 163-171
        • Deland J.T.
        • Arnoczky S.P.
        • Thompson F.M.
        Adult acquired flatfoot deformity at the talonavicular joint: reconstruction of the spring ligament in an in vitro model.
        Foot Ankle Int. 1992; 13: 327-332
        • Deland J.T.
        • de Asla R.J.
        • Sung I.H.
        • Ernberg L.A.
        • Potter H.G.
        Posterior tibial tendon insufficiency: which ligaments are involved.
        Foot Ankle Int. 2005; 26: 427-435
        • Dumontier T.A.
        • Falicov A.
        • Mosca V.
        • Sangeorzan B.
        Calcaneal lengthening: investigation of deformity correction in a cadaver flatfoot model.
        Foot Ankle Int. 2005; 26: 166-170
        • Erdemir A.
        • Hamel A.J.
        • Fauth A.R.
        • Piazza S.J.
        • Sharkey N.A.
        Dynamic loading of the plantar aponeurosis in walking.
        J. Bone Joint Surg. Am. 2004 Mar; 86: 546-552
        • Farris D.J.
        • Birch J.
        • Kelly L.
        Foot stiffening during the push-off phase of human walking is linked to active muscle contraction, and not the windlass mechanism.
        J. R. Soc. Interface. 2020; 17 (172020020820200208)
        • Fenwick S.A.
        • Hazleman B.L.
        • Riley G.P.
        The vasculature and its role in the damaged and healing tendon.
        Arthritis Res. 2002; 4: 252-260
        • Frank C.B.
        Ligament structure, physiology and function.
        J. Musculoskelet. Neuronal Interact. 2004; 4: 199-201
        • Giddings V.
        • Beaupr G.
        • Whalen R.
        • Carter D.
        Calcaneal loading during walking and running.
        Med. Sci. Sports Exerc. 2000; 32: 627-634
        • Goh J.C.
        • Mech A.M.
        • Lee E.H.
        • Ang E.J.
        • Bayon P.
        • Pho R.W.
        Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection.
        Clin. Orthop. Relat. Res. 1992; 279: 223-228
        • Hao Z.
        • Wan C.
        • Gao X.
        • Ji T.
        The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
        J. Biomech. Eng. 2011; 133101006
        • Hauser R.A.
        • Erin E.
        • Dolan R.N.
        Ligament injury and healing: an overview of current clinical concepts.
        J. Prolother. 2011; 3: 836-846
        • Hsu C.C.
        • Tsai W.C.
        • Chen C.P.
        • Shau Y.W.
        • Wang C.L.
        • Chen M.J.
        • Chang K.J.
        Effects of aging on the plantar soft tissue properties under the metatarsal heads at different impact velocities.
        Ultrasound Med. Biol. 2005; 31: 1423-1429
        • Hu P.
        • Wu T.
        • Wang H.Z.
        • Qi X.Z.
        • Yao J.
        • Cheng X.D.
        • Chen W.
        • Zhang Y.Z.
        Influence of different boundary conditions in finite element analysis on pelvic biomechanical load transmission.
        Orthop. Surg. 2017; 9: 115-122
        • Johnson K.A.
        Tibialis posterior tendon rupture.
        Clin. Orthop. Relat. Res. 1983; 177: 140-147
        • Kimizuka M.
        • Kurosawa H.
        • Fukubayashi T.
        1980. Load-bearing pattern of the ankle joint. Contact area and pressure distribution.
        Arch. Orthop. Trauma Surg. 1980; 96: 45-49
        • Kitaoka H.B.
        • Luo Z.P.
        • Growney E.S.
        • Berglund L.J.
        • An K.-N.
        Material properties of the plantar aponeurosis.
        Foot Ankle Int. 1994; 15: 557-560
        • Lakin R.C.
        • DeGnore L.T.
        • Pienkowski D.
        Contact mechanics of normal tarsometatarsal joints.
        J. Bone Joint Surg. Am. 2001; 83: 520-528
        • Lemmon D.
        • Shiang T.Y.
        • Hashmi A.
        • Ulbrecht J.S.
        • Cavanagh P.R.
        The effect of insoles in therapeutic footwear--a finite element approach.
        J. Biomech. 1997; 30: 615-620
        • Maganaris C.N.
        • Narici M.V.
        Mechanical properties of tendons.
        in: Maffulli N. Renström P. Leadbetter W.B. Tendon Injuries: Basic Science and Clinical Medicine. Springer London, London2005: 14-21
        • Malakoutikhah H.
        • Madenci E.
        • Latt L.D.
        The contribution of the ligaments in progressive collapsing foot deformity: a comprehensive computational study.
        J. Orthop. Res. 2022; : 1-13
        • Malakoutikhah H.
        • Madenci E.
        • Latt L.D.
        The impact of ligament tears on joint contact mechanics in progressive collapsing foot deformity: A finite element study.
        Clin. Biomech. 2022; 94: 105630
        • Malakoutikhah H.
        • Madenci E.
        • Latt L.D.
        A computational model of force within the ligaments and tendons in progressive collapsing foot deformity.
        J. Orthop. Res. 2022; : 1-11
        • Morales-Orcajo E.
        • Bayod J.
        • de Las Barbosa
        • Casas E.
        Computational foot modeling: scope and applications.
        Arch Computat. Methods Eng. 2016; 23: 389-416
        • Morales-Orcajo E.
        • Souza T.R.
        • Bayod J.
        • de Las Barbosa
        • Casas E.
        Non-linear finite element model to assess the effect of tendon forces on the foot-ankle complex.
        Med. Eng. Phys. 2017; 49: 71-78
        • Myerson M.S.
        • Thordarson D.B.
        • Johnson J.E.
        • Hintermann B.
        • Sangeorzan B.J.
        • Deland J.T.
        • Schon L.C.
        • Ellis S.J.
        • de Cesar Netto C.
        Classification and nomenclature: progressive collapsing foot deformity.
        Foot Ankle Int. 2020; 41: 1271-1276
        • Ozdemir H.
        • Söyüncü Y.
        • Ozgörgen M.
        • Dabak K.
        Effects of changes in heel fat pad thickness and elasticity on heel pain.
        J. Am. Podiatr. Med. Assoc. 2004; 94: 47-52
        • Parvizi J.
        • Kim G.K.
        • Associate Editor
        High Yield Orthopaedics.
        Saunders/Elsevier, 2010: 183-184 (Chapter 88)
        • Robi K.
        • Jakob N.
        • Matevz K.
        • Matjaz V.
        The physiology of sports injuries and repair processes.
        in: Current Issues in Sports and Exercise Medicine, edited by Michael Hamlin, Nick Draper, Yaso Kathiravel, IntechOpen. 2013https://doi.org/10.5772/54234
        • Salathe E.P.
        • Arangio G.A.
        A biomechanical model of the foot: the role of muscles, tendons, and ligaments.
        J. Biomech. Eng. 2002; 124: 281-287
        • Siegler S.
        • Block J.
        • Schneck C.D.
        The mechanical characteristics of the collateral ligaments of the human ankle joint.
        Foot Ankle. 1988; 8: 234-242
        • Wang Y.
        • Wong D.W.
        • Zhang M.
        Computational models of the foot and ankle for pathomechanics and clinical applications: a review.
        Ann. Biomed. Eng. 2016; 44: 213-221
        • Wong D.W.
        • Wang Y.
        • Chen T.L.
        • Yan F.
        • Peng Y.
        • Tan Q.
        • Ni M.
        • Leung A.K.
        • Zhang M.
        Finite element analysis of generalized ligament laxity on the deterioration of hallux valgus deformity (bunion).
        Front. Bioeng. Biotechnol. 2020; 8571192
        • Wong D.W.
        • Chen T.L.
        • Peng Y.
        • Lam W.
        • Wang Y.
        • Ni M.
        • Niu W.
        • Zhang M.
        An instrument for methodological quality assessment of single-subject finite element analysis used in computational orthopaedics.
        Med. Novel Technol. Dev. 2021; 11100067
        • Zhang M.
        • Fan Y.
        Computational Biomechanics of the Musculoskeletal System.
        CRC Press, 2014