Advertisement

Altered neuromuscular control in the vastus medialis following anterior cruciate ligament injury: A recurrence quantification analysis of electromyogram recruitment

      Highlights

      • Vastus medialis electromyography signals were examined.
      • Subjects with anterior cruciate ligament injury had less determinism and entropy.
      • Nonlinear analyses revealed impaired neuromuscular control.

      Abstract

      Background

      Neuromuscular deficits exist following anterior cruciate ligament (ACL) injury. To observe these deficits, we examined nonlinear characteristics of vastus medialis electromyography (EMG) signals during submaximal isometric knee extensor contractions. Our purpose was to examine if determinism and entropy in EMG signals reflected neuromuscular control deficits in individuals with ACL-deficient limbs.

      Methods

      24 participants (12 male, 12 female, mean age = 18.8 ± 3.1 years) with unilaterally injured ACLs and 25 age-similar healthy controls (11 male, 14 female, mean age = 18.8 ± 3.1 years) volunteered. Isometric knee extensions were tested at 10%, 25%, 35%, and 50% maximum voluntary contractions. Surface electrodes adhered over the vastus medialis captured EMG signals. EMG data were processed with recurrence quantification analyses. Specifically, determinism (an index of system predictability) and entropy (an index of system disorder) were calculated from recurrence plots.

      Findings

      Determinism and entropy in EMG signals were lower in the injured than uninjured limb, and lower than that from healthy controls (P < .05).

      Interpretation

      Vastus medialis EMG signals from the injured limb were less predictable and less complex than those from healthy limbs. The findings reflect impaired neuromuscular control in the injured limb's quadriceps and are consistent with a ‘loss of complexity’ hypothesis in physiologic signals emanating from pathologic states. Determinism and entropy in EMG signals may represent biomarkers of one's neuromuscular control system.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Afsar O.
        • Tirnakli U.
        • Marwan N.
        Recurrence quantification analysis at work: quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease.
        Sci. Rep. 2018; 8: 1-12
        • Blasimann A.
        • Koenig I.
        • Baert I.
        • Baur H.
        • Vissers D.
        Which assessments are used to analyze neuromuscular control by electromyography after an anterior cruciate ligament injury to determine readiness to return to sports? A systematic review.
        BMC Sports Sci Med Rehabil. 2021; 13: 1-33
        • Cashaback J.G.A.
        • Cluff T.
        • Potvin J.R.
        Muscle fatigue and contraction intensity modulates the complexity of surface electromyography.
        J. Electromyogr. Kinesiol. 2013; 23: 78-83https://doi.org/10.1016/j.jelekin.2012.08.004
        • Datta A.
        • Stephens J.
        Synchronization of motor unit activity during voluntary contraction in man.
        J. Physiol. 1990; 422: 397-419
        • Davi S.M.
        • Woxholdt C.K.
        • Rush J.L.
        • Lepley A.S.
        • Lepley L.K.
        Alterations in quadriceps neurologic complexity after anterior cruciate ligament reconstruction.
        J. Sport Rehabil. 2021; 30: 731-736https://doi.org/10.1123/jsr.2020-0307
        • De Luca C.J.
        • Donald Gilmore L.
        • Kuznetsov M.
        • Roy S.H.
        Filtering the surface EMG signal: movement artifact and baseline noise contamination.
        J. Biomech. 2010; 43: 1573-1579https://doi.org/10.1016/j.jbiomech.2010.01.027
        • De Luca C.J.
        • Kline J.C.
        • Contessa P.
        Transposed firing activation of motor units.
        J. Neurophysiol. 2014; 112: 962-970https://doi.org/10.1152/jn.00619.2013
        • Del Santo F.
        • Gelli F.
        • Schmied A.
        • Vedel J.-P.
        • Rossi A.
        • Mazzocchio R.
        Motor unit synchronous firing as revealed by determinism of surface myoelectric signal.
        J. Neurosci. Methods. 2006; 155: 116-121
        • Del Santo F.
        • Gelli F.
        • Mazzocchio R.
        • Rossi A.
        Recurrence quantification analysis of surface EMG detects changes in motor unit synchronization induced by recurrent inhibition.
        Exp. Brain Res. 2007; 178: 308-315
        • Enoka R.M.
        • Farina D.
        Force steadiness: from motor units to voluntary actions.
        Physiol. 2021; 36: 114-130
        • Farina D.
        • Fattorini L.
        • Felici F.
        • Filligoi G.
        Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization.
        J. Appl. Physiol. 2002; 93: 1753-1763
        • Fattorini L.
        • Felici F.
        • Filligoi G.C.
        • Traballesi M.
        • Farina D.
        Influence of high motor unit synchronization levels on non-linear and spectral variables of the surface EMG.
        J. Neurosci. Methods. 2005; 143: 133-139https://doi.org/10.1016/j.jneumeth.2004.09.018
        • Filligoi G.
        • Felici F.
        Detection of hidden rhythms in surface EMG signals with a non-linear time-series tool.
        Med. Eng. Phys. 1999; 21: 439-448
        • Fling B.W.
        • Christie A.
        • Kamen G.
        Motor unit synchronization in FDI and biceps brachii muscles of strength-trained males.
        J. Electromyogr. Kinesiol. 2009; 19: 800-809
        • Fraser A.M.
        • Swinney H.L.
        Independent coordinates for strange attractors from mutual information.
        Phys. Rev. A. 1986; 33: 1134
        • Goldberger A.L.
        • Peng C.-K.
        • Lipsitz L.A.
        What is physiologic complexity and how does it change with aging and disease?.
        Neurobiol. Aging. 2002; 23: 23-26
        • Hart J.M.
        • Pietrosimone B.
        • Hertel J.
        • Ingersoll C.D.
        Quadriceps activation following knee injuries: a systematic review.
        J. Athl. Train. 2010; 45: 87-97https://doi.org/10.4085/1062-6050-45.1.87
        • Hermens H.J.
        • Freriks B.
        • Disselhorst-Klug C.
        • Rau G.
        Development of recommendations for SEMG sensors and sensor placement procedures.
        J. Electromyogr. Kinesiol. 2000; 10: 361-374
        • Hollman J.H.
        • Nagai T.
        • Bates N.A.
        • McPherson A.L.
        • Schilaty N.D.
        Diminished neuromuscular system adaptability following anterior cruciate ligament injury: examination of knee muscle force variability and complexity.
        Clin. Biomech. 2021; 90105513https://doi.org/10.1016/j.clinbiomech.2021.105513
        • Hopkins J.T.
        • Ingersoll C.D.
        Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation.
        J. Sport Rehabil. 2000; 9: 135-159https://doi.org/10.1123/jsr.9.2.135
        • Hopkins J.
        • Ingersoll C.D.
        • Edwards J.
        • Klootwyk T.E.
        Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion.
        J. Athl. Train. 2002; 37: 25-31
        • Kaufman M.
        • Zurcher U.
        • Sung P.S.
        Entropy of electromyography time series.
        Physica A: Statistical Mechanics and its Applications. 2007; 386: 698-707https://doi.org/10.1016/j.physa.2007.07.045
        • Kennel M.B.
        • Brown R.
        • Abarbanel H.D.
        Determining embedding dimension for phase-space reconstruction using a geometrical construction.
        Phys. Rev. A. 1992; 45: 3403
        • Kornatz K.W.
        • Christou E.A.
        • Enoka R.M.
        Practice reduces motor unit discharge variability in a hand muscle and improves manual dexterity in old adults.
        J. Appl. Physiol. 2005; 98: 2072-2080https://doi.org/10.1152/japplphysiol.01149.2004
        • Kyritsis P.
        • Bahr R.
        • Landreau P.
        • Miladi R.
        • Witvrouw E.
        Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture.
        Br. J. Sports Med. 2016; 50: 946-951
        • Lipsitz L.A.
        • Goldberger A.L.
        Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence.
        JAMA. 1992; 267: 1806-1809
        • Liu Y.
        • Kankaanpää M.
        • Zbilut J.P.
        • Webber C.L.
        EMG recurrence quantifications in dynamic exercise.
        Biol. Cybern. 2004; 90: 337-348
        • Marwan N.
        • Romano M.C.
        • Thiel M.
        • Kurths J.
        Recurrence plots for the analysis of complex systems.
        Phys. Rep. 2007; 438: 237-329
        • Milner-Brown H.S.
        • Lee R.G.
        Synchronization of human motor units: possible roles of exercise and supraspinal reflexes.
        Electroencephalogr. Clin. Neurophysiol. 1975; 38: 245-254https://doi.org/10.1016/0013-4694(75)90245-X
        • Nawab S.H.
        • Chang S.-S.
        • De Luca C.J.
        High-yield decomposition of surface EMG signals.
        Clin. Neurophysiol. 2010; 121: 1602-1615
        • Norte G.
        • Rush J.
        • Sherman D.
        Arthrogenic muscle inhibition: best evidence, mechanisms, and theory for treating the unseen in clinical rehabilitation.
        J. Sport Rehabil. 2021; 1-19https://doi.org/10.1123/jsr.2021-0139
        • Pethick J.
        • Taylor M.J.D.
        • Harridge S.D.R.
        Aging and skeletal muscle force control: current perspectives and future directions.
        Scand. J. Med. Sci. Sports. 2022; 32: 1430-1443https://doi.org/10.1111/sms.14207
        • Pietrosimone B.
        • Lepley A.S.
        • Murray A.M.
        • Thomas A.C.
        • Bahhur N.O.
        • Schwartz T.A.
        Changes in voluntary quadriceps activation predict changes in muscle strength and gait biomechanics following knee joint effusion.
        Clin. Biomech. 2014; 29: 923-929https://doi.org/10.1016/j.clinbiomech.2014.06.014
        • Riley M.
        • Balasubramaniam R.
        • Turvey M.
        Recurrence quantification analysis of postural fluctuations.
        Gait Posture. 1999; 9: 65-78
        • Santello M.
        • Fuglevand A.J.
        Role of across-muscle motor unit synchrony for the coordination of forces.
        Exp. Brain Res. 2004; 159: 501-508
        • Schilaty N.D.
        • McPherson A.L.
        • Nagai T.
        • Bates N.A.
        Arthrogenic muscle inhibition manifests in thigh musculature motor unit characteristics after anterior cruciate ligament injury.
        Eur. J. Sport Sci. 2022; : 1-11
        • Schmied A.
        • Descarreaux M.
        Influence of contraction strength on single motor unit synchronous activity.
        Clin. Neurophysiol. 2010; 121: 1624-1632
        • Schmied A.
        • Pouget J.
        • Vedel J.-P.
        Electromechanical coupling and synchronous firing of single wrist extensor motor units in sporadic amyotrophic lateral sclerosis.
        Clin. Neurophysiol. 1999; 110: 960-974
        • Schuermans J.
        • Danneels L.
        • Van Tiggelen D.
        • Palmans T.
        • Witvrouw E.
        Proximal neuromuscular control protects against hamstring injuries in male soccer players: a prospective study with electromyography time-series analysis during maximal sprinting.
        Am. J. Sports Med. 2017; 45: 1315-1325https://doi.org/10.1177/0363546516687750
        • Semmler J.G.
        Motor unit synchronization and neuromuscular performance.
        Exerc. Sport Sci. Rev. 2002; 30: 8-14
        • Semmler J.
        • Nordstrom M.
        Motor unit discharge and force tremor in skill-and strength-trained individuals.
        Exp. Brain Res. 1998; 119: 27-38
        • Shannon C.E.
        A mathematical theory of communication.
        Bell Syst. Tech. J. 1948; 27: 379-423
        • Snyder-Mackler L.
        • De Luca P.F.
        • Williams P.R.
        • Eastlack M.E.
        • Bartolozzi 3rd., A.R.
        Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament.
        J. Bone Joint Surg. 1994; 76: 555-560
        • Spencer J.D.
        • Hayes K.
        • Alexander I.J.
        Knee joint effusion and quadriceps reflex inhibition in man.
        Arch. Phys. Med. Rehabil. 1984; 65: 171-177
        • Takens F.
        Detecting strange attractors in turbulence.
        in: Rand D.A. Young L.S. Dynamical Systems and Turbulence. Lecture Notes in Mathematics. vol. 898. Springer-Verlag, Berlin/Heidelberg1981: 366-381
        • Tracy B.L.
        • Maluf K.S.
        • Stephenson J.L.
        • Hunter S.K.
        • Enoka R.M.
        Variability of motor unit discharge and force fluctuations across a range of muscle forces in older adults.
        Muscle Nerve. 2005; 32: 533-540https://doi.org/10.1002/mus.20392
        • Troiano A.
        • Naddeo F.
        • Sosso E.
        • Camarota G.
        • Merletti R.
        • Mesin L.
        Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface EMG signal and perceived exertion scale.
        Gait Posture. 2008; 28: 179-186
        • Vaillancourt D.E.
        • Newell K.M.
        Aging and the time and frequency structure of force output variability.
        J. Appl. Physiol. 2003; 94: 903-912
        • van Leeuwen J.L.
        Neuromuscular control: introduction and overview.
        Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999; 354: 841-847
        • Webber Jr., C.L.
        • Zbilut J.P.
        Dynamical assessment of physiological systems and states using recurrence plot strategies.
        J. Appl. Physiol. 1994; 76: 965-973
        • Webber Jr., C.L.
        • Schmidt M.
        • Walsh J.M.
        Influence of isometric loading on biceps EMG dynamics as assessed by linear and nonlinear tools.
        J. Appl. Physiol. 1995; 78: 814-822
        • Zambalde E.
        • Germer C.
        • Elias L.
        Entropy of motor unit activity and surface electromyogram in an isometric force task.
        in: Proceedings SPIE 12088, 17th International Symposium on Medical Information Processing and Analysis. 2021: 1208802https://doi.org/10.1117/12.2606261