Evaluation of bone healing process after intramedullary nailing for femoral shaft fracture by quantitative computed tomography-based finite element analysis


      • Quantitative CT-based finite element model with inhomogeneous material for callus.
      • Pilot study on quantitative assessment of the bone healing process.
      • Trial of criteria for intramedullary nail removal based on healthy side strength.



      There is no proven method for quantitative evaluation of bone healing progress or decision to remove the nail after intramedullary nailing for femoral shaft fractures. Finite element analysis has become commonly utilized in bone analysis, but it may also be used to evaluate callus. The goal of this study was to use quantitative CT-based finite element analysis to assess the bone healing process and predict bone strength with the nail removed.


      Quantitative CT-based finite element analysis was conducted on CT images from patients who had intramedullary nailing after a femoral shaft fracture at 6, 12, and 15 months postoperatively. The failure risk of the callus was evaluated with maximal load throughout the gait cycle. The tensile failure ratio was calculated using the volume ratio of the callus element with a tensile failure risk ≥100%. A virtual model with the nail removed was built for bone strength study, and the strength was calculated using the displacement-load curve.


      The tensile failure ratio reduced with time, reaching 11.6%, 2.6%, and 0.5% at 6, 12, and 15 months postoperatively, respectively, consistent with bone healing inferred from imaging results. At 15 months, the bone strength at nail removal grew to 212, 2670, and 3385 N, surpassing the healthy side's 2766 N.


      Quantitative CT-based finite element analysis enables mechanical assessment during the bone healing process and is expected to be applied to the selection of revision surgery. It is also applicable to the nail removal decision.



      CT (computed tomography), QCT/FEA (quantitative computed tomography-based finite element analysis), HA (hydroxyapatite)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Arazi M.
        • Oğün T.C.
        • Oktar M.N.
        • Memik R.
        • Kutlu A.
        Early weight-bearing after statically locked reamed intramedullary nailing of comminuted femoral fractures: is it a safe procedure?.
        J. Trauma. 2001; 50 (PubMed PMID: 11303169): 711-716
        • Bahaloo H.
        • Enns-Bray W.S.
        • Fleps I.
        • Ariza O.
        • Gilchrist S.
        • Soyka R.W.
        • et al.
        On the failure initiation in the proximal human femur under simulated sideways fall.
        Ann. Biomed. Eng. 2018; 46 (Epub 20171127) (PubMed PMID: 29181721): 270-283
        • Bergmann G.
        • Deuretzbacher G.
        • Heller M.
        • Graichen F.
        • Rohlmann A.
        • Strauss J.
        • et al.
        Hip contact forces and gait patterns from routine activities.
        J. Biomech. 2001; 34 (PubMed PMID: 11410170): 859-871
        • Bessho M.
        • Ohnishi I.
        • Matsuyama J.
        • Matsumoto T.
        • Imai K.
        • Nakamura K.
        Prediction of strength and strain of the proximal femur by a CT-based finite element method.
        J. Biomech. 2007; 40 (Epub 2006/10/10) (PubMed PMID: 17034798): 1745-1753
        • Brumback R.J.
        • Toal T.R.
        • Murphy-Zane M.S.
        • Novak V.P.
        • Belkoff S.M.
        Immediate weight-bearing after treatment of a comminuted fracture of the femoral shaft with a statically locked intramedullary nail.
        J. Bone Joint Surg. Am. 1999; 81 (PubMed PMID: 10565645): 1538-1544
        • Calmet H.
        • Gambaruto A.M.
        • Bates A.J.
        • Vázquez M.
        • Houzeaux G.
        • Doorly D.J.
        Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.
        Comput. Biol. Med. 2016; 69 (Epub 20151217) (PubMed PMID: 26773939): 166-180
        • Castravete Ş.
        • Mazilu D.
        • Gruionu L.G.
        • Militaru C.
        • Militaru S.
        • UdriŞtoiu A.L.
        • et al.
        Finite Element analysis of a novel aortic valve stent.
        Curr. Health Sci. J. 2020; 46 (Epub 20200930) (PubMed PMID: 33304631; PubMed Central PMCID: PMC7716760): 290-296
        • Claes L.
        • Eckert-Hübner K.
        • Augat P.
        The fracture gap size influences the local vascularization and tissue differentiation in callus healing.
        Langenbeck’s Arch. Surg. 2003; 388 (Epub 20030909) (PubMed PMID: 13680236): 316-322
        • Claes L.
        • Meyers N.
        • Schülke J.
        • Reitmaier S.
        • Klose S.
        • Ignatius A.
        The mode of interfragmentary movement affects bone formation and revascularization after callus distraction.
        PLoS One. 2018; 13 (Epub 2018/08/23) (PubMed PMID: 30138362; PubMed Central PMCID: PMC6107229)e0202702
        • Dragomir-Daescu D.
        • Op Den Buijs J.
        • McEligot S.
        • Dai Y.
        • Entwistle R.C.
        • Salas C.
        • et al.
        Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip.
        Ann. Biomed. Eng. 2011; 39 (Epub 2010/10/29) (PubMed PMID: 21052839; PubMed Central PMCID: PMC3870095): 742-755
        • Drucker D.C.
        • Prager W.
        Soil mechanics and plastic analysis or limit design.
        Q. Appl. Math. 1952; 10: 157-165
        • Epari D.R.
        • Kassi J.P.
        • Schell H.
        • Duda G.N.
        Timely fracture-healing requires optimization of axial fixation stability.
        J. Bone Joint Surg. Am. 2007; 89 (PubMed PMID: 17606797): 1575-1585
        • Heller M.O.
        • Bergmann G.
        • Kassi J.P.
        • Claes L.
        • Haas N.P.
        • Duda G.N.
        Determination of muscle loading at the hip joint for use in pre-clinical testing.
        J. Biomech. 2005; 38 (PubMed PMID: 15797596): 1155-1163
        • Hui C.
        • Jorgensen I.
        • Buckley R.
        • Fick G.
        Incidence of intramedullary nail removal after femoral shaft fracture healing.
        Can. J. Surg. 2007; 50 (PubMed PMID: 17391610; PubMed Central PMCID: PMC2384239): 13-18
        • Imai K.
        • Ohnishi I.
        • Bessho M.
        • Nakamura K.
        Nonlinear finite element model predicts vertebral bone strength and fracture site.
        Spine (Phila Pa 1976). 2006; 31 (PubMed PMID: 16845352): 1789-1794
        • Keller T.S.
        Predicting the compressive mechanical behavior of bone.
        J. Biomech. 1994; 27 (PubMed PMID: 7929465): 1159-1168
        • Keyak J.H.
        • Falkinstein Y.
        Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load.
        Med. Eng. Phys. 2003; 25 (PubMed PMID: 14519351): 781-787
        • Keyak J.H.
        • Lee I.Y.
        • Skinner H.B.
        Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures.
        J. Biomed. Mater. Res. 1994; 28 (PubMed PMID: 7829563): 1329-1336
        • Koso R.E.
        • Terhoeve C.
        • Steen R.G.
        • Zura R.
        Healing, nonunion, and re-operation after internal fixation of diaphyseal and distal femoral fractures: a systematic review and meta-analysis.
        Int. Orthop. 2018; 42 (Epub 2018/03/08) (PubMed PMID: 29516238): 2675-2683
        • Leong P.L.
        • Morgan E.F.
        Measurement of fracture callus material properties via nanoindentation.
        Acta Biomater. 2008; 4 (Epub 2008/03/19) (PubMed PMID: 18400573; PubMed Central PMCID: PMC2575108): 1569-1575
        • Matsuura Y.
        • Giambini H.
        • Ogawa Y.
        • Fang Z.
        • Thoreson A.R.
        • Yaszemski M.J.
        • et al.
        Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty.
        Spine (Phila Pa 1976). 2014; 39 (PubMed PMID: 25077904; PubMed Central PMCID: PMC4191996): E1291-E1296
        • Matsuura Y.
        • Kuniyoshi K.
        • Suzuki T.
        • Ogawa Y.
        • Sukegawa K.
        • Rokkaku T.
        • et al.
        Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material.
        Comput. Methods Biomech. Biomed. Engin. 2015; 18 (Epub 2014/11/06) (PubMed PMID: 25374112): 1811-1817
        • Matsuyama Y.
        • Matsuura Y.
        • Suzuki T.
        • Akasaka T.
        • Himeno D.
        • Yamazaki A.
        • et al.
        New material property conversion equation for bone strength measurement for CT-based finite element modeling.
        Chiba Med. J. 2020; 96: 41-46
        • Medlock G.
        • Stevenson I.M.
        • Johnstone A.J.
        Uniting the un-united: should established non-unions of femoral shaft fractures initially treated with IM nails be treated by plate augmentation instead of exchange IM nailing? A systematic review.
        Strategies Trauma Limb. Reconstr. 2018; 13 (Epub 20181113) (PubMed PMID: 30426320; PubMed Central PMCID: PMC6249146): 119-128
        • Megas P.
        • Panagiotis M.
        Classification of non-union.
        Injury. 2005; 36 (PubMed PMID: 16291321): S30-S37
        • Metsemakers W.J.
        • Roels N.
        • Belmans A.
        • Reynders P.
        • Nijs S.
        Risk factors for nonunion after intramedullary nailing of femoral shaft fractures: remaining controversies.
        Injury. 2015; 46 (Epub 2015/05/12) (PubMed PMID: 26026201): 1601-1607
        • Ortega G.R.
        • Cunningham B.P.
        Femoral shaft nonunions.
        in: Agarwal A. Nonunions: Diagnosis, Evaluation and Management. Springer US, Boston, MA2018: 227-242
        • Paterno M.V.
        • Archdeacon M.T.
        • Ford K.R.
        • Galvin D.
        • Hewett T.E.
        Early rehabilitation following surgical fixation of a femoral shaft fracture.
        Phys. Ther. 2006; 86 (PubMed PMID: 16579672): 558-572
        • Peleg E.
        • Herblum R.
        • Beek M.
        • Joskowicz L.
        • Liebergall M.
        • Mosheiff R.
        • et al.
        Can a partial volume edge effect reduction algorithm improve the repeatability of subject-specific finite element models of femurs obtained from CT data?.
        Comput. Methods Biomech. Biomed. Engin. 2014; 17 (Epub 20120328) (PubMed PMID: 22452517): 204-209
        • Perren S.M.
        Physical and biological aspects of fracture healing with special reference to internal fixation.
        Clin. Orthop. Relat. Res. 1979; 138 (PubMed PMID: 376198): 175-196
        • Pihlajamäki H.K.
        • Salminen S.T.
        • Böstman O.M.
        The treatment of nonunions following intramedullary nailing of femoral shaft fractures.
        J. Orthop. Trauma. 2002; 16 (PubMed PMID: 12142827): 394-402
        • Quental C.
        • Folgado J.
        • Monteiro J.
        • Sarmento M.
        Full-thickness tears of the supraspinatus tendon: A three-dimensional finite element analysis.
        J. Biomech. 2016; 49 (Epub 20161116) (PubMed PMID: 27890533): 3962-3970
        • Society C.O.T.
        Nonunion following intramedullary nailing of the femur with and without reaming. Results of a multicenter randomized clinical trial.
        J. Bone Joint Surg. Am. 2003; 85 (PubMed PMID: 14630836): 2093-2096
        • Suzuki T.
        • Matsuura Y.
        • Yamazaki T.
        • Akasaka T.
        • Ozone E.
        • Matsuyama Y.
        • et al.
        Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis.
        Bone. 2020; 132 (Epub 2019/12/28) (PubMed PMID: 31891786): 115212
        • Taitsman L.A.
        • Lynch J.R.
        • Agel J.
        • Barei D.P.
        • Nork S.E.
        Risk factors for femoral nonunion after femoral shaft fracture.
        J. Trauma. 2009; 67 (PubMed PMID: 19704386): 1389-1392
        • Viscardi F.
        • Vergara C.
        • Antiga L.
        • Merelli S.
        • Veneziani A.
        • Puppini G.
        • et al.
        Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve.
        Artif. Organs. 2010; 34 (PubMed PMID: 20618222): 1114-1120
        • Wako Y.
        • Nakamura J.
        • Matsuura Y.
        • Suzuki T.
        • Hagiwara S.
        • Miura M.
        • et al.
        Finite element analysis of the femoral diaphysis of fresh-frozen cadavers with computed tomography and mechanical testing.
        J. Orthop. Surg. Res. 2018; 13 (Epub 20180731) (PubMed PMID: 30064512; PubMed Central PMCID: PMC6069821): 192
        • Watanabe Y.
        • Takenaka N.
        • Kobayashi M.
        • Matsushita T.
        Infra-isthmal fracture is a risk factor for nonunion after femoral nailing: a case-control study.
        J. Orthop. Sci. 2013; 18 (Epub 2012/10/11) (PubMed PMID: 23053587): 76-80
        • Wu A.Y.
        • Hsu J.T.
        • Fuh L.J.
        • Huang H.L.
        Biomechanical effect of implant design on four implants supporting mandibular full-arch fixed dentures: In vitro test and finite element analysis.
        J. Formos. Med. Assoc. 2020; 119 (Epub 20191226) (PubMed PMID: 31883628): 1514-1523