Highlights
- •Hydrocephalus has high forward and lateral dynamic gait stability regardless of their fall-risk.
- •High fall-risk patients may consciously maintain lateral dynamic stability to a greater extent.
- •These findings highlight a conscious motor control component in the pathological gait.
Abstract
Background
This study aimed to investigate whether dynamic gait stability differs between idiopathic
normal-pressure hydrocephalus with high- and low-fall-risk.
Methods
Participants comprised 40 idiopathic normal-pressure hydrocephalus patients and 23
healthy-controls. Idiopathic normal-pressure hydrocephalus patients were divided into
those with high-fall-risk (n = 20) and low-fall-risk (n = 20) groups using the cut-off score of ≤14/30 for fall-risk
on the Functional Gait Assessment. Dynamic stability during gait was assessed by three-dimensional
motion analysis. Dynamic stability was defined as the ability to maintain an extrapolated
center of mass within the base of support at heel contact, with the distance between
the two defined as the margin of stability. Conscious motor control was assessed by
the Movement-Specific Reinvestment Scale.
Findings
Anteroposterior and mediolateral margin of stabilities were significantly larger in
both idiopathic normal-pressure hydrocephalus groups than in healthy-controls. The
mediolateral margin of stability was significantly higher in the high-fall-risk group
than in the low-fall-risk group; whereas, the anteroposterior margin of stability
did not differ between idiopathic normal-pressure hydrocephalus groups. The Movement-Specific
Reinvestment Scale was significantly higher in the high-fall-risk group than in the
low-fall-risk group.
Interpretation
Idiopathic normal-pressure hydrocephalus patients with have high forward and lateral
dynamic stability during gait regardless of their fall-risk. In particular, idiopathic
normal-pressure hydrocephalus patients with high-fall-risk may consciously maintain
lateral dynamic stability to a greater extent than those with low-fall-risk. These
findings highlight a conscious motor control component in the pathological gait of
idiopathic normal-pressure hydrocephalus, and provide clues for rehabilitation and
fall prevention strategies in idiopathic normal-pressure hydrocephalus patients.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Clinical BiomechanicsAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- The effect of spinal tap test on different sensory modalities of postural stability in idiopathic normal pressure hydrocephalus.Dement. Geriatr. Cogn. Dis. Extra. 2016; 6: 447-457https://doi.org/10.1159/000450602
- Dynamic postural stability during sit-to-walk transitions in Parkinson disease patients.Mov. Disord. 2008; 23: 1274-1280https://doi.org/10.1002/mds.22079
- Gait dysfunction in Parkinson’s disease and normal pressure hydrocephalus: a comparative study.J. Neural Transm. 2013; 120: 1201-1207https://doi.org/10.1007/s00702-013-0975-3
- Assessing the predictive value of common gait measure for predicting falls in patients presenting with suspected normal pressure hydrocephalus.BMC Neurol. 2021; 21: 4-9https://doi.org/10.1186/s12883-021-02068-0
- The FAB a frontal asseessment battery at bedside.Neurology. 2000; 55: 1621-1626https://doi.org/10.1212/WNL.57.3.565
- “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician.J. Psychiatr. Res. 1975; 12: 189-198https://doi.org/10.1016/0022-3956(75)90026-6
- Dynamic functional networks in idiopathic normal pressure hydrocephalus: alterations and reversibility by CSF tap test.Hum. Brain Mapp. 2021; 42: 1485-1502https://doi.org/10.1002/hbm.25308
- Stepping strategies used by post-stroke individuals to maintain margins of stability during walking.Clin. Biomech. 2013; 28: 1041-1048https://doi.org/10.1016/j.clinbiomech.2013.10.010
- Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease.Mov. Disord. 1998; 13: 428-437https://doi.org/10.1002/mds.870130310
- A new scale for assessment of severity and outcome in iNPH.Acta Neurol. Scand. 2012; 126: 229-237https://doi.org/10.1111/j.1600-0404.2012.01677.x
- Normal gait characteristics under temporal and distance constraints.J. Biomed. Eng. 1989; 11: 449-456https://doi.org/10.1016/0141-5425(89)90038-1
- The condition for dynamic stability.J. Biomech. 2005; 38: 1-8https://doi.org/10.1016/j.jbiomech.2004.03.025
- The inclination for conscious motor control after stroke: validating the movement-specific reinvestment scale for use in inpatient stroke patients.Disabil. Rehabil. 2016; 38: 1097-1106https://doi.org/10.3109/09638288.2015.1091858
- Lumboperitoneal shunt surgery for idiopathic normal pressure hydrocephalus (SINPHONI-2): an open-label randomised trial.Lancet Neurol. 2015; 14: 585-594https://doi.org/10.1016/S1474-4422(15)00046-0
- Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus.Dement. Geriatr. Cogn. Disord. 2008; 25: 37-45https://doi.org/10.1159/000111149
- Adaptation of stability during perturbed walking in Parkinson’s disease.Sci. Rep. 2017; 7: 1-11https://doi.org/10.1038/s41598-017-18075-6
- Voluntary changes in step width and step length during human walking affect dynamic margins of stability.Gait Posture. 2012; 36: 219-224https://doi.org/10.1016/j.gaitpost.2012.02.020
- Is the assessment of 5 meters of gait with a single body-fixed-sensor enough to recognize idiopathic Parkinson’s disease-associated gait?.Ann. Biomed. Eng. 2017; 45: 1266-1278https://doi.org/10.1007/s10439-017-1794-8
- Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the japanese society of normal pressure hydrocephalus.Neurol. Med. Chir. (Tokyo). 2021; 61: 63-97https://doi.org/10.2176/nmc.st.2020-0292
- The effect of CSF drainage on ambulatory center of mass movement in idiopathic normal pressure hydrocephalus.Gait Posture. 2018; 63: 5-9https://doi.org/10.1016/j.gaitpost.2018.04.024
- Postural instability differences between idiopathic normal pressure hydrocephalus and Parkinson’s disease.Clin. Neurol. Neurosurg. 2018; 165: 103-107https://doi.org/10.1016/j.clineuro.2018.01.012
- Dynamic balance measurements can differentiate patients who fall from patients who do not fall in patients with idiopathic normal pressure hydrocephalus.Arch. Phys. Med. Rehabil. 2019; 100: 1458-1466https://doi.org/10.1016/j.apmr.2019.01.008
- Associations among falls, gait variability, and balance function in idiopathic normal pressure hydrocephalus.Clin. Neurol. Neurosurg. 2019; 183105385https://doi.org/10.1016/j.clineuro.2019.105385
- Perceived and actual changes in gait balance after CSF shunting in idiopathic normal pressure hydrocephalus.Acta Neurol. Scand. 2021; 144 (21–28. ane.13421)https://doi.org/10.1111/ane.13421
- Higher-level gait disorders: an open frontier.Mov. Disord. 2013; 28: 1560-1565https://doi.org/10.1002/mds.25673
- Reinvestment and movement disruption following stroke.Neurorehabil. Neural Repair. 2009; 23: 177-183https://doi.org/10.1177/1545968308317752
- Dynamic margin of stability during gait is altered in persons with multiple sclerosis.J. Biomech. 2016; 49: 3949-3955https://doi.org/10.1016/j.jbiomech.2016.11.009
- Dynamic balance in persons with multiple sclerosis who have a falls history is altered compared to non-fallers and to healthy controls.J. Biomech. 2017; 63: 158-163https://doi.org/10.1016/j.jbiomech.2017.08.023
- Neural control of walking in people with parkinsonism.Physiology. 2016; 31: 95-107https://doi.org/10.1152/physiol.00034.2015
- Diagnosing idiopathic normal-pressure hydrocephalus.Neurosurgery. 2005; 57: S24-S216https://doi.org/10.1227/01.NEU.0000168185.29659.C5
- Physical exercise and goal attainment after shunt surgery in idiopathic normal pressure hydrocephalus: a randomised clinical trial.Fluids Barriers CNS. 2021; 18: 1-11https://doi.org/10.1186/s12987-021-00287-8
- Gait analysis in PSP and NPH.Neurology. 2018; 90: e1021-e1028https://doi.org/10.1212/WNL.0000000000005168
- Predicting the probability for falls in community-dwelling older adults using the timed Up & Go test.Phys. Ther. 2000; 80: 896-903
- Postural instability and gait impairment during obstacle crossing in parkinson’s disease.Arch. Phys. Med. Rehabil. 2012; 93: 703-709
- Gait analysis in idiopathic normal pressure hydrocephalus - which parameters respond to the CSF tap test?.Clin. Neurophysiol. 2000; 111: 1678-1686https://doi.org/10.1016/S1388-2457(00)00362-X
- Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’ s disease.2001: 289-297
- Forward gait instability in patients with Parkinson’s disease with freezing of gait.Neurosci. Res. 2021; 173: 80-89https://doi.org/10.1016/j.neures.2021.06.007
- Plug-in-Gait Modelling Instructions.Oxford metrics Ltd, 2015
- Reliability, internal consistency, and validity of data obtained with the functional gait assessment.Phys. Ther. 2004; 84 (doi:Article): 906-918
Article info
Publication history
Published online: September 02, 2022
Accepted:
August 30,
2022
Received:
January 14,
2022
Identification
Copyright
© 2022 Elsevier Ltd. All rights reserved.