Advertisement

Dynamic gait stability in patients with idiopathic normal pressure hydrocephalus with high and low fall-risk

      Highlights

      • Hydrocephalus has high forward and lateral dynamic gait stability regardless of their fall-risk.
      • High fall-risk patients may consciously maintain lateral dynamic stability to a greater extent.
      • These findings highlight a conscious motor control component in the pathological gait.

      Abstract

      Background

      This study aimed to investigate whether dynamic gait stability differs between idiopathic normal-pressure hydrocephalus with high- and low-fall-risk.

      Methods

      Participants comprised 40 idiopathic normal-pressure hydrocephalus patients and 23 healthy-controls. Idiopathic normal-pressure hydrocephalus patients were divided into those with high-fall-risk (n = 20) and low-fall-risk (n = 20) groups using the cut-off score of ≤14/30 for fall-risk on the Functional Gait Assessment. Dynamic stability during gait was assessed by three-dimensional motion analysis. Dynamic stability was defined as the ability to maintain an extrapolated center of mass within the base of support at heel contact, with the distance between the two defined as the margin of stability. Conscious motor control was assessed by the Movement-Specific Reinvestment Scale.

      Findings

      Anteroposterior and mediolateral margin of stabilities were significantly larger in both idiopathic normal-pressure hydrocephalus groups than in healthy-controls. The mediolateral margin of stability was significantly higher in the high-fall-risk group than in the low-fall-risk group; whereas, the anteroposterior margin of stability did not differ between idiopathic normal-pressure hydrocephalus groups. The Movement-Specific Reinvestment Scale was significantly higher in the high-fall-risk group than in the low-fall-risk group.

      Interpretation

      Idiopathic normal-pressure hydrocephalus patients with have high forward and lateral dynamic stability during gait regardless of their fall-risk. In particular, idiopathic normal-pressure hydrocephalus patients with high-fall-risk may consciously maintain lateral dynamic stability to a greater extent than those with low-fall-risk. These findings highlight a conscious motor control component in the pathological gait of idiopathic normal-pressure hydrocephalus, and provide clues for rehabilitation and fall prevention strategies in idiopathic normal-pressure hydrocephalus patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abram K.
        • Bohne S.
        • Bublak P.
        • Karvouniari P.
        • Klingner C.M.
        • Witte O.W.
        • Guntinas-Lichius O.
        • Axer H.
        The effect of spinal tap test on different sensory modalities of postural stability in idiopathic normal pressure hydrocephalus.
        Dement. Geriatr. Cogn. Dis. Extra. 2016; 6: 447-457https://doi.org/10.1159/000450602
        • Buckley T.A.
        • Pitsikoulis C.
        • Hass C.J.
        Dynamic postural stability during sit-to-walk transitions in Parkinson disease patients.
        Mov. Disord. 2008; 23: 1274-1280https://doi.org/10.1002/mds.22079
        • Bugalho P.
        • Alves L.
        • Miguel R.
        Gait dysfunction in Parkinson’s disease and normal pressure hydrocephalus: a comparative study.
        J. Neural Transm. 2013; 120: 1201-1207https://doi.org/10.1007/s00702-013-0975-3
        • Davis A.
        • Luciano M.
        • Moghekar A.
        • Yasar S.
        Assessing the predictive value of common gait measure for predicting falls in patients presenting with suspected normal pressure hydrocephalus.
        BMC Neurol. 2021; 21: 4-9https://doi.org/10.1186/s12883-021-02068-0
        • Dubois B.
        • Slachevsky A.
        • Litvan I.
        • Pillon B.
        The FAB a frontal asseessment battery at bedside.
        Neurology. 2000; 55: 1621-1626https://doi.org/10.1212/WNL.57.3.565
        • Folstein M.F.
        • Folstein S.E.
        • McHugh P.R.
        “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician.
        J. Psychiatr. Res. 1975; 12: 189-198https://doi.org/10.1016/0022-3956(75)90026-6
        • Griffa A.
        • Bommarito G.
        • Assal F.
        • Herrmann F.R.
        • Van De Ville D.
        • Allali G.
        Dynamic functional networks in idiopathic normal pressure hydrocephalus: alterations and reversibility by CSF tap test.
        Hum. Brain Mapp. 2021; 42: 1485-1502https://doi.org/10.1002/hbm.25308
        • Hak L.
        • Houdijk H.
        • Van Der Wurff P.
        • Prins M.R.
        • Mert A.
        • Beek P.J.
        • Van Dieën J.H.
        Stepping strategies used by post-stroke individuals to maintain margins of stability during walking.
        Clin. Biomech. 2013; 28: 1041-1048https://doi.org/10.1016/j.clinbiomech.2013.10.010
        • Hausdorff J.M.
        • Cudkowicz M.E.
        • Firtion R.
        • Wei J.Y.
        • Goldberger A.L.
        Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease.
        Mov. Disord. 1998; 13: 428-437https://doi.org/10.1002/mds.870130310
        • Hellström P.
        • Klinge P.
        • Tans J.
        • Wikkelsø C.
        A new scale for assessment of severity and outcome in iNPH.
        Acta Neurol. Scand. 2012; 126: 229-237https://doi.org/10.1111/j.1600-0404.2012.01677.x
        • Hirokawa S.
        Normal gait characteristics under temporal and distance constraints.
        J. Biomed. Eng. 1989; 11: 449-456https://doi.org/10.1016/0141-5425(89)90038-1
        • Hof A.L.
        • Gazendam M.G.J.
        • Sinke W.E.
        The condition for dynamic stability.
        J. Biomech. 2005; 38: 1-8https://doi.org/10.1016/j.jbiomech.2004.03.025
        • Kal E.
        • Houdijk H.
        • Van Der Wurff P.
        • Groet E.
        • Van Bennekom C.
        • Scherder E.
        • Van Der Kamp J.
        The inclination for conscious motor control after stroke: validating the movement-specific reinvestment scale for use in inpatient stroke patients.
        Disabil. Rehabil. 2016; 38: 1097-1106https://doi.org/10.3109/09638288.2015.1091858
        • Kazui H.
        • Miyajima M.
        • Mori E.
        • Ishikawa M.
        • for the SINPHONI-2 Investigators
        Lumboperitoneal shunt surgery for idiopathic normal pressure hydrocephalus (SINPHONI-2): an open-label randomised trial.
        Lancet Neurol. 2015; 14: 585-594https://doi.org/10.1016/S1474-4422(15)00046-0
        • Kubo Y.
        • Kazui H.
        • Yoshida T.
        • Kito Y.
        • Kimura N.
        • Tokunaga H.
        • Ogino A.
        • Miyake H.
        • Ishikawa M.
        • Takeda M.
        Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus.
        Dement. Geriatr. Cogn. Disord. 2008; 25: 37-45https://doi.org/10.1159/000111149
        • Martelli D.
        • Luo L.
        • Kang J.
        • Kang U.J.
        • Fahn S.
        • Agrawal S.K.
        Adaptation of stability during perturbed walking in Parkinson’s disease.
        Sci. Rep. 2017; 7: 1-11https://doi.org/10.1038/s41598-017-18075-6
        • McAndrew Young P.M.
        • Dingwell J.B.
        Voluntary changes in step width and step length during human walking affect dynamic margins of stability.
        Gait Posture. 2012; 36: 219-224https://doi.org/10.1016/j.gaitpost.2012.02.020
        • Micó-Amigo M.E.
        • Kingma I.
        • Faber G.S.
        • Kunikoshi A.
        • van Uem J.M.T.
        • van Lummel R.C.
        • Maetzler W.
        • van Dieën J.H.
        Is the assessment of 5 meters of gait with a single body-fixed-sensor enough to recognize idiopathic Parkinson’s disease-associated gait?.
        Ann. Biomed. Eng. 2017; 45: 1266-1278https://doi.org/10.1007/s10439-017-1794-8
        • Nakajima M.
        • Yamada S.
        • Miyajima M.
        • Ishii K.
        • Kuriyama N.
        • Kazui H.
        • Kanemoto H.
        • Suehiro T.
        • Yoshiyama K.
        • Kameda M.
        • Kajimoto Y.
        • Mase M.
        • Murai H.
        • Kita D.
        • Kimura T.
        • Samejima N.
        • Tokuda T.
        • Kaijima M.
        • Akiba C.
        • Kawamura K.
        • Atsuchi M.
        • Hirata Y.
        • Matsumae M.
        • Sasaki M.
        • Yamashita F.
        • Aoki S.
        • Irie R.
        • Miyake H.
        • Kato T.
        • Mori E.
        • Ishikawa M.
        • Date I.
        • Arai H.
        Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the japanese society of normal pressure hydrocephalus.
        Neurol. Med. Chir. (Tokyo). 2021; 61: 63-97https://doi.org/10.2176/nmc.st.2020-0292
        • Nikaido Y.
        • Akisue T.
        • Kajimoto Y.
        • Ikeji T.
        • Kawami Y.
        • Urakami H.
        • Sato H.
        • Nishiguchi T.
        • Hinoshita T.
        • Iwai Y.
        • Kuroda K.
        • Ohno H.
        • Saura R.
        The effect of CSF drainage on ambulatory center of mass movement in idiopathic normal pressure hydrocephalus.
        Gait Posture. 2018; 63: 5-9https://doi.org/10.1016/j.gaitpost.2018.04.024
        • Nikaido Y.
        • Akisue T.
        • Kajimoto Y.
        • Tucker A.
        • Kawami Y.
        • Urakami H.
        • Iwai Y.
        • Sato H.
        • Nishiguchi T.
        • Hinoshita T.
        • Kuroda K.
        • Ohno H.
        • Saura R.
        Postural instability differences between idiopathic normal pressure hydrocephalus and Parkinson’s disease.
        Clin. Neurol. Neurosurg. 2018; 165: 103-107https://doi.org/10.1016/j.clineuro.2018.01.012
        • Nikaido Y.
        • Kajimoto Y.
        • Akisue T.
        • Urakami H.
        • Kawami Y.
        • Kuroda K.
        • Ohno H.
        • Saura R.
        Dynamic balance measurements can differentiate patients who fall from patients who do not fall in patients with idiopathic normal pressure hydrocephalus.
        Arch. Phys. Med. Rehabil. 2019; 100: 1458-1466https://doi.org/10.1016/j.apmr.2019.01.008
        • Nikaido Y.
        • Urakami H.
        • Akisue T.
        • Okada Y.
        • Katsuta N.
        • Kawami Y.
        • Ikeji T.
        • Kuroda K.
        • Hinoshita T.
        • Ohno H.
        • Kajimoto Y.
        • Saura R.
        Associations among falls, gait variability, and balance function in idiopathic normal pressure hydrocephalus.
        Clin. Neurol. Neurosurg. 2019; 183105385https://doi.org/10.1016/j.clineuro.2019.105385
        • Nikaido Y.
        • Urakami H.
        • Akisue T.
        • Okada Y.
        • Kawami Y.
        • Naoya I.
        • Kuroda K.
        • Ohno H.
        • Kajimoto Y.
        • Saura R.
        Perceived and actual changes in gait balance after CSF shunting in idiopathic normal pressure hydrocephalus.
        Acta Neurol. Scand. 2021; 144 (21–28. ane.13421)https://doi.org/10.1111/ane.13421
        • Nutt J.G.
        Higher-level gait disorders: an open frontier.
        Mov. Disord. 2013; 28: 1560-1565https://doi.org/10.1002/mds.25673
        • Orrell A.J.
        • Masters R.S.W.
        • Eves F.F.
        Reinvestment and movement disruption following stroke.
        Neurorehabil. Neural Repair. 2009; 23: 177-183https://doi.org/10.1177/1545968308317752
        • Peebles A.T.
        • Reinholdt A.
        • Bruetsch A.P.
        • Lynch S.G.
        • Huisinga J.M.
        Dynamic margin of stability during gait is altered in persons with multiple sclerosis.
        J. Biomech. 2016; 49: 3949-3955https://doi.org/10.1016/j.jbiomech.2016.11.009
        • Peebles A.T.
        • Bruetsch A.P.
        • Lynch S.G.
        • Huisinga J.M.
        Dynamic balance in persons with multiple sclerosis who have a falls history is altered compared to non-fallers and to healthy controls.
        J. Biomech. 2017; 63: 158-163https://doi.org/10.1016/j.jbiomech.2017.08.023
        • Peterson D.S.
        • Horak F.B.
        Neural control of walking in people with parkinsonism.
        Physiology. 2016; 31: 95-107https://doi.org/10.1152/physiol.00034.2015
        • Relkin N.
        • Marmarou A.
        • Klinge P.
        • Bergsneider M.
        • McL Black P.
        Diagnosing idiopathic normal-pressure hydrocephalus.
        Neurosurgery. 2005; 57: S24-S216https://doi.org/10.1227/01.NEU.0000168185.29659.C5
        • Rydja J.
        • Kollén L.
        • Hellström P.
        • Owen K.
        • Lundgren Nilsson Å.
        • Wikkelsø C.
        • Tullberg M.
        • Lundin F.
        Physical exercise and goal attainment after shunt surgery in idiopathic normal pressure hydrocephalus: a randomised clinical trial.
        Fluids Barriers CNS. 2021; 18: 1-11https://doi.org/10.1186/s12987-021-00287-8
        • Selge C.
        • Schoeberl F.
        • Zwergal A.
        • Nuebling G.
        • Brandt T.
        • Dieterich M.
        • Schniepp R.
        • Jahn K.
        Gait analysis in PSP and NPH.
        Neurology. 2018; 90: e1021-e1028https://doi.org/10.1212/WNL.0000000000005168
        • Shumway-cook A.
        • Brauer S.
        Predicting the probability for falls in community-dwelling older adults using the timed Up & Go test.
        Phys. Ther. 2000; 80: 896-903
        • Stegemller E.L.
        • Buckley T.A.
        • Pitsikoulis C.
        • Barthelemy E.
        • Roemmich R.
        • Hass C.J.
        Postural instability and gait impairment during obstacle crossing in parkinson’s disease.
        Arch. Phys. Med. Rehabil. 2012; 93: 703-709
        • Stolze H.
        • Kuhtz-Buschbeck J.P.
        • Drücke H.
        • Jöhnk K.
        • Diercks C.
        • Palmié S.
        • Mehdorn H.M.
        • Illert M.
        • Deuschl G.
        Gait analysis in idiopathic normal pressure hydrocephalus - which parameters respond to the CSF tap test?.
        Clin. Neurophysiol. 2000; 111: 1678-1686https://doi.org/10.1016/S1388-2457(00)00362-X
        • Stolze H.
        • Drücke H.
        • Jöhnk K.
        • Illert M.
        • Deuschl G.
        • Kiel U.
        • Kiel D.
        • Kiel U.
        • Stolze H.
        Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’ s disease.
        2001: 289-297
        • Urakami H.
        • Nikaido Y.
        • Kuroda K.
        • Ohno H.
        • Saura R.
        • Okada Y.
        Forward gait instability in patients with Parkinson’s disease with freezing of gait.
        Neurosci. Res. 2021; 173: 80-89https://doi.org/10.1016/j.neures.2021.06.007
        • Vicon®
        Plug-in-Gait Modelling Instructions.
        Oxford metrics Ltd, 2015
        • Wrisley D.M.
        • Marchetti G.F.
        • Kuharsky D.K.
        • Whitney S.L.
        Reliability, internal consistency, and validity of data obtained with the functional gait assessment.
        Phys. Ther. 2004; 84 (doi:Article): 906-918