Advertisement
Research Article| Volume 99, 105756, October 2022

Intervertebral kinematics during neck motion 6.5 years after fusion and artificial disc replacement

      Highlights

      • Adjacent segment disease is believed to occur when motion is limited at index level.
      • We measured how kinematics change over time after fusion or arthroplasty at C5C6.
      • Axial rotation at C4C5 superior to fusion decreased over time in neck axial rotation.
      • Anteroposterior translation at C6C7 decreased over time in neck extension for fusion.
      • Increased adjacent segment motion in fusion causing further disease is not supported.

      Abstract

      Background

      Arthroplasty with artificial disc replacement for surgical treatment of cervical spine degeneration was introduced with the notion that motion-preserving approaches would prevent development of adjacent segment disease. Though clinical outcomes favor arthroplasty over the commonly used anterior cervical discectomy with fusion approach, clinical studies confirming the biomechanical basis of these results are lacking. The aim of this study was to compare intervertebral kinematics between arthroplasty and fusion patients 6.5 years post-surgery during physiological motion of the neck.

      Methods

      Using a biplane dynamic X-ray system, computed tomography imaging and model based tracking algorithms, three dimensional intervertebral kinematics were measured during neck axial rotation and extension in 14 patients treated for cervical radiculopathy with fusion (n = 8) or arthroplasty (n = 6). The measurements were performed at 2-year (baseline) and 6.5 year post-surgical time points, with the main interest being in the interaction between surgery types and time points. 3 translations and 3 rotations were investigated for the index (C5C6), and upper- (C4C5) and lower adjacent levels (C6C7).

      Findings

      Surgery-time interaction was significant for axial rotation (P < 0.04) and flexion-extension rotation (P < 0.005) in C4C5 during neck axial rotation, left-right translation (P < 0.04) in C5C6 and anterior-posterior translation in C6C7 (P < 0.04) during neck extension. In contrast with the expectations, axial rotation and flexion-extension decreased in C4C5 during neck rotation and anterior-posterior translation decreased in C6C7 during neck extension for fusion.

      Interpretation

      The findings do not support the notion that adjacent segment motion increases after fusion.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Acosta Jr., F.L.
        • Ames C.P.
        Cervical disc arthroplasty: general introduction.
        Neurosurg. Clin. N. Am. 2005; 16: 603-607
        • Anderst W.J.
        • Baillargeon E.
        • Donaldson 3rd, W.F.
        • Lee J.Y.
        • Kang J.D.
        Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement.
        Spine (Phila Pa 1976). 2011; 36: E393-E400
        • Anderst W.J.
        • Donaldson 3rd, W.F.
        • Lee J.Y.
        • Kang J.D.
        Cervical motion segment contributions to head motion during flexion\extension, lateral bending, and axial rotation.
        Spine J. 2015; 15: 2538-2543
        • Anderst W.J.
        • West T.
        • Donaldson 3rd, W.F.
        • Lee J.Y.
        • Kang J.D.
        Longitudinal study of the six degrees of freedom cervical spine range of motion during dynamic flexion, extension, and rotation after single-level anterior arthrodesis.
        Spine (Phila Pa 1976). 2016; 41: E1319-E1327
        • Azad S.
        • Oravec D.
        • Baumer T.
        • Schildcrout A.
        • White P.
        • Basheer A.
        • Bey M.J.
        • Bartol S.W.
        • Chang V.
        • Yeni Y.N.
        Dynamic foraminal dimensions during neck motion 6.5 years after fusion and artificial disc replacement.
        PLoS One. 2020; 15e0237350
        • Basho R.
        • Hood K.A.
        Cervical total disc arthroplasty.
        Global Spine J. 2012; 2: 105-108
        • Bey M.J.
        • Zauel R.
        • Brock S.K.
        • Tashman S.
        Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics.
        J. Biomech. Eng. 2006; 128: 604-609
        • Burkhardt B.W.
        • Brielmaier M.
        • Schwerdtfeger K.
        • Sharif S.
        • Oertel J.M.
        Smith-Robinson procedure with an autologous iliac crest graft and Caspar plating: report of 65 patients with an average follow-up of 22 years.
        World Neurosurg. 2016; 90: 244-250
        • Burkus J.K.
        • Traynelis V.C.
        • Haid Jr., R.W.
        • Mummaneni P.V.
        Clinical and radiographic analysis of an artificial cervical disc: 7-year follow-up from the prestige prospective randomized controlled clinical trial: clinical article.
        J. Neurosurg. Spine. 2014; 21: 516-528
        • Buttermann G.R.
        Anterior cervical discectomy and fusion outcomes over 10 years: a prospective study.
        Spine (Phila Pa 1976). 2018; 43: 207-214
        • Chang V.
        • Basheer A.
        • Baumer T.
        • Oravec D.
        • McDonald C.P.
        • Bey M.J.
        • Bartol S.
        • Yeni Y.N.
        Dynamic measurements of cervical neural foramina during neck movements in asymptomatic young volunteers.
        Surg. Radiol. Anat. 2017; 39: 1069-1078
        • Chiles 3rd, B.W.
        • Leonard M.A.
        • Choudhri H.F.
        • Cooper P.R.
        Cervical spondylotic myelopathy: patterns of neurological deficit and recovery after anterior cervical decompression.
        Neurosurgery. 1999; 44 (discussion 769-770): 762-769
        • Cignoni P.
        • Callieri M.
        • Corsini M.
        • Dellepiane M.
        • Ganovelli F.
        • Ranzuglia G.
        Scarano V. De Chiara R. Erra U. MeshLab: an Open-Source Mesh Processing Tool. Sixth Eurographics Italian Chapter Conference. The Eurographics Association, Salerno, Italy2008: 129-136
        • Dejaegher J.
        • Walraevens J.
        • van Loon J.
        • Van Calenbergh F.
        • Demaerel P.
        • Goffin J.
        10-year follow-up after implantation of the Bryan cervical disc prosthesis.
        Eur. Spine J. 2017; 26: 1191-1198
        • Donk R.D.
        • Verhagen W.I.M.
        • Hosman A.J.F.
        • Verbeek A.
        • Bartels R.
        Symptomatic adjacent segment disease after anterior cervical discectomy for single-level degenerative disk disease.
        Clin. Spine Surg. 2018; 31: E50-e54
        • Eck J.C.
        • Humphreys S.C.
        • Lim T.H.
        • Jeong S.T.
        • Kim J.G.
        • Hodges S.D.
        • An H.S.
        Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion.
        Spine (Phila Pa 1976). 2002; 27: 2431-2434
        • Fehlings M.G.
        • Wilson J.R.
        • Kopjar B.
        • Yoon S.T.
        • Arnold P.M.
        • Massicotte E.M.
        • Vaccaro A.R.
        • Brodke D.S.
        • Shaffrey C.I.
        • Smith J.S.
        • Woodard E.J.
        • Banco R.J.
        • Chapman J.R.
        • Janssen M.E.
        • Bono C.M.
        • Sasso R.C.
        • Dekutoski M.B.
        • Gokaslan Z.L.
        Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: results of the AOSpine North America prospective multi-center study.
        J. Bone Joint Surg. Am. 2013; 95: 1651-1658
        • Guo Y.
        • Logan H.L.
        • Glueck D.H.
        • Muller K.E.
        Selecting a sample size for studies with repeated measures.
        BMC Med. Res. Methodol. 2013; 13: 100
        • Hilibrand A.S.
        • Carlson G.D.
        • Palumbo M.A.
        • Jones P.K.
        • Bohlman H.H.
        Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis.
        J. Bone Joint Surg. Am. 1999; 81: 519-528
        • Ishihara H.
        • Kanamori M.
        • Kawaguchi Y.
        • Nakamura H.
        • Kimura T.
        Adjacent segment disease after anterior cervical interbody fusion.
        Spine J. 2004; 4: 624-628
        • Jacobs C.A.M.
        • Siepe C.J.
        • Ito K.
        Viscoelastic cervical total disc replacement devices: design concepts.
        Spine J. 2020; 20: 1911-1924
        • Kang Y.
        • Lee J.W.
        • Koh Y.H.
        • Hur S.
        • Kim S.J.
        • Chai J.W.
        • Kang H.S.
        New MRI grading system for the cervical canal stenosis.
        AJR Am. J. Roentgenol. 2011; 197: W134-W140
        • Kong L.
        • Cao J.
        • Wang L.
        • Shen Y.
        Prevalence of adjacent segment disease following cervical spine surgery: a PRISMA-compliant systematic review and meta-analysis.
        Medicine (Baltimore). 2016; 95
        • Lau D.
        • Chou D.
        • Mummaneni P.V.
        Two-level corpectomy versus three-level discectomy for cervical spondylotic myelopathy: a comparison of perioperative, radiographic, and clinical outcomes.
        J. Neurosurg. Spine. 2015; 23: 280-289
        • Lawrence R.L.
        • Sessions W.C.
        • Jensen M.C.
        • Staker J.L.
        • Eid A.
        • Breighner R.
        • Helwig N.E.
        • Braman J.P.
        • Ludewig P.M.
        The effect of glenohumeral plane of elevation on supraspinatus subacromial proximity.
        J. Biomech. 2018; 79: 147-154
        • LeVasseur C.M.
        • Pitcairn S.
        • Shaw J.
        • Donaldson W.F.
        • Lee J.Y.
        • Anderst W.J.
        The effects of age, pathology, and fusion on cervical neural foramen area.
        J. Orthop. Res. 2021; 39: 671-679
        • Lin C.C.
        • Lu T.W.
        • Wang T.M.
        • Hsu C.Y.
        • Hsu S.J.
        • Shih T.F.
        In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach.
        J. Biomech. 2014; 47: 3310-3317
        • MacDowall A.
        • Canto Moreira N.
        • Marques C.
        • Skeppholm M.
        • Lindhagen L.
        • Robinson Y.
        • Lofgren H.
        • Michaelsson K.
        • Olerud C.
        Artificial disc replacement versus fusion in patients with cervical degenerative disc disease and radiculopathy: a randomized controlled trial with 5-year outcomes.
        J. Neurosurg. Spine. 2019; 30: 323-331
        • Matsumoto M.
        • Fujimura Y.
        • Suzuki N.
        • Nishi Y.
        • Nakamura M.
        • Yabe Y.
        • Shiga H.
        MRI of cervical intervertebral discs in asymptomatic subjects.
        J. Bone Joint Surg. (Br.). 1998; 80: 19-24
        • McDonald C.P.
        • Bachison C.C.
        • Chang V.
        • Bartol S.W.
        • Bey M.J.
        Three-dimensional dynamic in vivo motion of the cervical spine: assessment of measurement accuracy and preliminary findings.
        Spine J. 2010; 10: 497-504
        • McDonald C.P.
        • Chang V.
        • McDonald M.
        • Ramo N.
        • Bey M.J.
        • Bartol S.
        Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients: clinical article.
        J. Neurosurg. Spine. 2014; 20: 245-255
        • Miyazaki M.
        • Hong S.W.
        • Yoon S.H.
        • Morishita Y.
        • Wang J.C.
        Reliability of a magnetic resonance imaging-based grading system for cervical intervertebral disc degeneration.
        J. Spinal Disord. Tech. 2008; 21: 288-292
        • Murrey D.
        • Janssen M.
        • Delamarter R.
        • Goldstein J.
        • Zigler J.
        • Tay B.
        • Darden B.
        Results of the prospective, randomized, controlled multicenter Food and Drug Administration investigational device exemption study of the ProDisc-C total disc replacement versus anterior discectomy and fusion for the treatment of 1-level symptomatic cervical disc disease.
        Spine J. 2009; 9: 275-286
        • Sasso W.R.
        • Smucker J.D.
        • Sasso M.P.
        • Sasso R.C.
        Long-term clinical outcomes of cervical disc arthroplasty: a prospective, randomized, controlled trial.
        Spine (Phila Pa 1976). 2017; 42: 209-216
        • Shedid D.
        • Benzel E.C.
        Cervical spondylosis anatomy: pathophysiology and biomechanics.
        Neurosurgery. 2007; 60: S7-13
        • Torg J.S.
        • Pavlov H.
        • Genuario S.E.
        • Sennett B.
        • Wisneski R.J.
        • Robie B.H.
        • Jahre C.
        Neurapraxia of the cervical spinal cord with transient quadriplegia.
        J. Bone Joint Surg. Am. 1986; 68: 1354-1370
        • Treece G.M.
        • Prager R.W.
        • Gee A.H.
        Regularised marching tetrahedra: improved iso-surface extraction.
        Comput. Graph. 1999; 23: 583-598
        • Vaccaro A.
        • Beutler W.
        • Peppelman W.
        • Marzluff J.
        • Mugglin A.
        • Ramakrishnan P.S.
        • Myer J.
        • Baker K.J.
        Long-term clinical experience with selectively constrained SECURE-C cervical artificial disc for 1-level cervical disc disease: results from seven-year follow-up of a prospective, randomized, controlled investigational device exemption clinical trial.
        Int. J. Spine Surg. 2018; 12: 377-387
        • Vavken P.
        • Ganal-Antonio A.K.
        • Quidde J.
        • Shen F.H.
        • Chapman J.R.
        • Samartzis D.
        Fundamentals of clinical outcomes assessment for spinal disorders: clinical outcome instruments and applications.
        Global Spine J. 2015; 5: 329-338
        • Vernon H.
        • Mior S.
        The neck disability index: a study of reliability and validity.
        J. Manipulative Physiol. Ther. 1991; 14: 409-415
        • Wang H.
        • Zhou C.
        • Yu Y.
        • Wang C.
        • Tsai T.Y.
        • Han C.
        • Li G.
        • Cha T.
        Quantifying the ranges of relative motions of the intervertebral discs and facet joints in the normal cervical spine.
        J. Biomech. 2020; 112110023
        • Xiong Y.
        • Xu L.
        • Yu X.
        • Yang Y.
        • Zhao D.
        • Hu Z.
        • Li C.
        • Zhao H.
        • Duan L.
        • Zhang B.
        • Chen S.
        • Liu T.
        Comparison of 6-year follow-up result of hybrid surgery and anterior cervical discectomy and fusion for the treatment of contiguous two-segment cervical degenerative disc diseases.
        Spine (Phila Pa 1976). 2018; 43: 1418-1425
        • Yeni Y.N.
        • Baumer T.
        • Oravec D.
        • Basheer A.
        • McDonald C.P.
        • Bey M.J.
        • Bartol S.W.
        • Chang V.
        Dynamic foraminal dimensions during neck extension and rotation in fusion and artificial disc replacement: an observational study.
        Spine J. 2018; 18: 575-583
        • Yu Y.
        • Mao H.
        • Li J.S.
        • Tsai T.Y.
        • Cheng L.
        • Wood K.B.
        • Li G.
        • Cha T.D.
        Ranges of cervical intervertebral disc deformation during an in vivo dynamic flexion-extension of the neck.
        J. Biomech. Eng. 2017; 139