Advertisement

Biomechanical analysis of atlantoaxial intraarticular fusion cages with posterior pedicle screws fixation using finite element method

      Highlights

      • The stress distribution of the atlantoaxial intraarticular cages with fixation was indicated.
      • Intraarticular cages with fixation could restore stability to the atlantoaxial junction.
      • The addition of the intraarticular cages to could reduce the maximum Von Mises stress.

      Abstract

      Background

      Cadaveric biomechanical studies indicated that atlantoaxial intraarticular fusion cages with posterior pedicle screws fixation could increase the multi-axial rigidity. However, the stress distribution of the fixation construct is still unclear.

      Methods

      From computed tomography images, a nonlinear intact three-dimensional C0–2 finite element model was developed and validated. Four finite element models were reconstructed: intact model, unstable model, bilateral atlantoaxial pedicle screws combined bilateral cages model, bilateral atlantoaxial pedicle screws model. The range of motion and maximum von Mises stresses were compared under flexion, extension, lateral bending, and axial rotation.

      Findings

      Compared with unstable model, both bilateral atlantoaxial pedicle screws combined bilateral cages model and bilateral atlantoaxial pedicle screws model fixation techniques reduced range of motion by >99% in extension, flexion, lateral bending and axial rotation. For bilateral atlantoaxial pedicle screws combined bilateral cages model, the maximum von Mises stress was in the base of the C2 screw head site. In the bilateral atlantoaxial pedicle screws model was stressed at the rod linked C1 and C2 screws. Compared with bilateral atlantoaxial pedicle screws model, bilateral atlantoaxial pedicle screws combined bilateral cages model reduced the maximum von Mises stress on the implants by >90% in extension, flexion, lateral bending and axial rotation.

      Interpretation

      The finite element model study indicated that, compared with posterior C1-C2 pedicle screws fixation, atlantoaxial intraarticular fusion cages with posterior pedicle screws fixation could not only significantly restore stability to the atlantoaxial junction, but also dramatically reduce the maximum von Mises stress in the C1-C2 pedicle screws.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Acosta F.L.
        • Cloyd J.M.
        • Aryan H.E.
        • Ames C.P.
        Perioperative complications and clinical outcomes of multilevel circumferential lumbar spinal fusion in the elderly.
        J. Clin. Neurosci. 2009; 16: 69-73
        • Aryan H.E.
        • Newman C.B.
        • Nottmeier E.W.
        • Acosta Jr., F.L.
        • Wang V.Y.
        • Ames C.P.
        Stabilization of the atlantoaxial complex via C-1 lateral mass and C-2 pedicle screw fixation in a multicenter clinical experience in 102 patients: modification of the Harms and Goel techniques.
        J. Neurosurg. Spine. 2008; 8: 222-229
        • Bransford R.J.
        • Lee M.J.
        • Reis A.
        Posterior fixation of the upper cervical spine: contemporary techniques.
        J. Am. Acad. Orthop. Surg. 2011; 19: 63-71
        • Donnellan M.B.
        • Sergides I.G.
        • Sears W.R.
        Atlantoaxial stabilization using multiaxial C-1 posterior arch screws.
        J. Neurosurg. Spine. 2008; 9: 522-527
        • Etame A.B.
        • Wang A.C.
        • Than K.D.
        • La Marca F.
        • Park P.
        Outcomes after surgery for cervical spine deformity: review of the literature.
        Neurosurg. Focus. 2010; 28: E14
        • Goel A.
        Treatment of basilar invagination by atlantoaxial joint distraction and direct lateral mass fixation.
        J. Neurosurg. Spine. 2004; 1: 281-286
        • Goel A.
        Atlantoaxial joint jamming as a treatment for atlantoaxial dislocation: a preliminary report. Technical note.
        J. Neurosurg. Spine. 2007; 7: 90-94
        • Goel A.
        • Laheri V.
        Plate and screw fixation for atlanto-axial subluxation.
        Acta Neurochir. 1994; 129: 47-53
        • Grob D.
        • Crisco 3rd, J.J.
        • Panjabi M.M.
        • Wang P.
        • Dvorak J.
        Biomechanical evaluation of four different posterior atlantoaxial fixation techniques.
        Spine (Phila Pa 1976). 1992; 17: 480-490
        • Harms J.
        • Melcher R.P.
        Posterior C1-C2 fusion with polyaxial screw and rod fixation.
        Spine (Phila Pa 1976). 2001; 26: 2467-2471
        • Jeon S.W.
        • Jeong J.H.
        • Choi G.H.
        • Moon S.M.
        • Hwang H.S.
        • Choi S.K.
        Clinical outcome of posterior fixation of the C1 lateral mass and C2 pedicle by polyaxial screw and rod.
        Clin. Neurol. Neurosurg. 2012; 114: 539-544
        • Li S.K.
        • Ni B.
        • Xie N.
        • Wang M.F.
        • Guo X.
        • Zhang F.
        • Wang J.
        • Zhao W.D.
        Biomechanical evaluation of an atlantoaxial lateral mass fusion cage with C1-C2 pedicle fixation.
        Spine (Phila Pa 1976). 2010; 35: E624-E632
        • Luk K.D.
        • Chow D.H.
        • Holmes A.
        Vertical instability in spondylolisthesis: a traction radiographic assessment technique and the principle of management.
        Spine (Phila Pa 1976). 2003; 28: 819-827
        • Panjabi M.
        • Dvorak J.
        • Duranceau J.
        • Yamamoto I.
        • Gerber M.
        • Rauschning W.
        • Bueff H.U.
        Three-dimensional movements of the upper cervical spine.
        Spine (Phila Pa 1976). 1988; 13: 726-730
        • Park J.
        • Scheer J.K.
        • Lim T.J.
        • Deviren V.
        • Ames C.P.
        Biomechanical analysis of Goel technique for C1-2 fusion.
        J. Neurosurg. Spine. 2011; 14: 639-646
        • Polikeit A.
        • Ferguson S.J.
        • Nolte L.P.
        • Orr T.E.
        Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis.
        Eur. Spine J. 2003; 12: 413-420
        • Puttlitz C.M.
        • Goel V.K.
        • Traynelis V.C.
        • Clark C.R.
        A finite element investigation of upper cervical instrumentation.
        Spine (Phila Pa 1976). 2001; 26: 2449-2455
        • Resnick D.K.
        • Lapsiwala S.
        • Trost G.R.
        Anatomic suitability of the C1-C2 complex for pedicle screw fixation.
        Spine (Phila Pa 1976). 2002; 27: 1494-1498
        • Srivastava S.K.
        • Aggarwal R.A.
        • Nemade P.S.
        • Bhosale S.K.
        Single-stage anterior release and posterior instrumented fusion for irreducible atlantoaxial dislocation with basilar invagination.
        Spine J. 2016; 16: 1-9
        • Wang S.
        • Yan M.
        • Passias P.G.
        • Wang C.
        Atlantoaxial rotatory fixed dislocation: report on a series of 32 pediatric cases.
        Spine (Phila Pa 1976). 2016; 41: E725-E732
        • Xie Y.
        • Li Z.
        • Tang H.
        • Li M.
        • Guan Z.
        Posterior C1 lateral mass and C2 pedicle screw internal fixation for atlantoaxial instability.
        J. Clin. Neurosci. 2009; 16: 1592-1594
        • Zhang B.
        • Liu H.
        • Cai X.
        • Wang Z.
        • Xu F.
        • Liu X.
        • Wang H.
        • Kang H.
        • Ding R.
        Biomechanical comparison of modified TARP technique versus modified Goel technique for the treatment of basilar invagination: a finite element analysis.
        Spine (Phila Pa 1976). 2016; 41: E459-E466