Advertisement

Gait asymmetry of lower extremities reduced immediately after minimally invasive surgery among patients with lumbar disc herniation

  • Junqing Wang
    Affiliations
    West China Biomedical Big Data Center, Sichuan University West China Hospital, Chengdu, Sichuan Province, China

    Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan Province, China
    Search for articles by this author
  • Qiang Zou
    Affiliations
    Department of Orthopedics, Orthopedic Research Institute and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
    Search for articles by this author
  • Shiqi Li
    Affiliations
    College of Electrical Engineering, Sichuan University, Chengdu, Sichuan Province, China
    Search for articles by this author
  • Ruoliang Tang
    Affiliations
    Sichuan University-Pittsburgh Institute (SCUPI), Sichuan University, Chengdu, Sichuan Province, China
    Search for articles by this author
  • Xi Yang
    Affiliations
    Department of Orthopedics, Orthopedic Research Institute and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
    Search for articles by this author
  • Jiancheng Zeng
    Affiliations
    Department of Orthopedics, Orthopedic Research Institute and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
    Search for articles by this author
  • Bin Shen
    Affiliations
    Department of Orthopedics, Orthopedic Research Institute and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
    Search for articles by this author
  • Kang Li
    Correspondence
    Corresponding authors at: Sichuan University, West China Hospital, 37# Wainan Guoxue Road, Chengdu, Sichuan Province, China.
    Affiliations
    West China Biomedical Big Data Center, Sichuan University West China Hospital, Chengdu, Sichuan Province, China
    Search for articles by this author
  • Yong Nie
    Correspondence
    Corresponding authors at: Sichuan University, West China Hospital, 37# Wainan Guoxue Road, Chengdu, Sichuan Province, China.
    Affiliations
    Department of Orthopedics, Orthopedic Research Institute and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
    Search for articles by this author

      Highlights

      • Gait asymmetry was estimated in lumbar disc herniation patients before and after surgery.
      • Gait asymmetry improved in lumbar disc herniation patients after surgery.
      • Postoperative lumbar disc herniation patients walked with less compensation.

      Abstract

      Background

      Lumbar disc herniation patients with increased pain exhibit greater gait asymmetry in stance time, swing time and single support time. Percutaneous endoscopic lumbar discectomy, as a minimally invasive surgical procedure has been used to treat patients with lumbar disc herniation. The objective of this study was to evaluate the immediate impact of the percutaneous endoscopic lumbar discectomy on gait asymmetry in spatiotemporal and kinetic parameters among lumbar disc herniation patients.

      Methods

      Marker trajectories and ground reaction forces were measured during walking among 67 lumbar disc herniation patients and 15 healthy controls. Spatiotemporal gait parameters were analyzed via Visual3D. Muscle force and joint contact force were calculated with OpenSim. Gait asymmetry of those parameters were assessed with asymmetry index.

      Findings

      After surgery, gait asymmetry in gait cycle time, step length, peak biceps femoris long head, tensor fasciae latae and rectus femoris muscle forces, and peak hip and knee joint contact forces reduced immediately. Postoperatively, increased gait cycle time and decreased step length were found in the affected side. Moreover, decreased peak biceps femoris long head, tensor fasciae latae and rectus femoris muscle forces, and peak hip joint contact force were observed in the contralateral side.

      Interpretation

      These results suggested compensation strategy that biceps femoris long head, tensor fasciae latae and rectus femoris in the contralateral side were mainly used to compensate the affected side preoperatively in lumbar disc herniation patients, with less compensation between lower limbs after surgery, which may provide an insight into postoperative rehabilitation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Allen J.L.
        • Kautz S.A.
        • Neptune R.R.
        Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking.
        Gait Posture. 2011; 33: 538-543https://doi.org/10.1016/j.gaitpost.2011.01.004
        • Amano T.
        • Tamari K.
        • Tanaka S.
        • Uchida S.
        • Ito H.
        • Morikawa S.
        • Kawamura K.
        Factors for assessing the effectiveness of early rehabilitation after minimally invasive Total knee arthroplasty: a prospective cohort study.
        PLoS One. 2016; 11e0159172https://doi.org/10.1371/journal.pone.0159172
        • Anderson F.C.
        • Pandy M.G.
        Static and dynamic optimization solutions for gait are practically equivalent.
        J. Biomech. 2001; 34: 153-161https://doi.org/10.1016/s0021-9290(00)00155-x
        • Andriacchi T.P.
        • Ogle J.A.
        • Galante J.O.
        Walking speed as a basis for normal and abnormal gait measurements.
        J. Biomech. 1977; 10: 261-268https://doi.org/10.1016/0021-9290(77)90049-5
        • Block J.A.
        • Shakoor N.
        Lower limb osteoarthritis: biomechanical alterations and implications for therapy.
        Curr. Opin. Rheumatol. 2010; 22: 544-550https://doi.org/10.1097/BOR.0b013e32833bd81f
        • Constantinou M.
        • Barrett R.
        • Brown M.
        • Mills P.
        Spatial-temporal gait characteristics in individuals with hip osteoarthritis: a systematic literature review and meta-analysis.
        J. Orthop. Sports Phys. Ther. 2014; 44: 291-b297https://doi.org/10.2519/jospt.2014.4634
        • Delp S.L.
        • Anderson F.C.
        • Arnold A.S.
        • Loan P.
        • Habib A.
        • John C.T.
        • Thelen D.G.
        OpenSim: open-source software to create and analyze dynamic simulations of movement.
        IEEE Trans. Biomed. Eng. 2007; 54: 1940-1950https://doi.org/10.1109/tbme.2007.901024
        • Devereaux M.W.
        Anatomy and examination of the spine.
        Neurol. Clin. 2007; 25: 331-351https://doi.org/10.1016/j.ncl.2007.02.003
        • Drijkoningen D.
        • Caeyenberghs K.
        • Vander Linden C.
        • Van Herpe K.
        • Duysens J.
        • Swinnen S.P.
        Associations between muscle strength asymmetry and impairments in gait and posture in young brain-injured patients.
        J. Neurotrauma. 2015; 32: 1324-1332https://doi.org/10.1089/neu.2014.3787
        • Hayashi H.
        • Toribatake Y.
        • Murakami H.
        • Yoneyama T.
        • Watanabe T.
        • Tsuchiya H.
        Gait analysis using a support vector machine for lumbar spinal stenosis.
        Orthopedics. 2015; 38: e959-e964https://doi.org/10.3928/01477447-20151020-02
        • Jørgensen L.
        • Crabtree N.J.
        • Reeve J.
        • Jacobsen B.K.
        Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading.
        Bone. 2000; 27: 701-707https://doi.org/10.1016/s8756-3282(00)00374-4
        • Kondo M.
        • Iwamoto Y.
        • Kito N.
        Relationship between forward propulsion and foot motion during gait in healthy young adults.
        J. Biomech. 2021; 121: 110431https://doi.org/10.1016/j.jbiomech.2021.110431
        • Kortelainen P.
        • Puranen J.
        • Koivisto E.
        • Lähde S.
        Symptoms and signs of sciatica and their relation to the localization of the lumbar disc herniation.
        Spine (Phila Pa 1976). 1985; 10: 88-92https://doi.org/10.1097/00007632-198501000-00014
        • Kreiner D.S.
        • Hwang S.W.
        • Easa J.E.
        • Resnick D.K.
        • Baisden J.L.
        • Bess S.
        • Toton J.F.
        An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy.
        Spine J. 2014; 14: 180-191https://doi.org/10.1016/j.spinee.2013.08.003
        • Kuwahara W.
        • Deie M.
        • Fujita N.
        • Tanaka N.
        • Nakanishi K.
        • Sunagawa T.
        • Ochi M.
        Characteristics of thoracic and lumbar movements during gait in lumbar spinal stenosis patients before and after decompression surgery.
        Clin. Biomech. (Bristol, Avon). 2016; 40: 45-51https://doi.org/10.1016/j.clinbiomech.2016.10.016
        • Lee K.
        • Kim E.S.
        • Jung B.
        • Park S.W.
        • Ha I.H.
        Association between pain and gait instability in patients with lumbar disc herniation.
        J. Int. Med. Res. 2021; 49 (3000605211039386)https://doi.org/10.1177/03000605211039386
        • Loske S.
        • Nüesch C.
        • Byrnes K.S.
        • Fiebig O.
        • Schären S.
        • Mündermann A.
        • Netzer C.
        Decompression surgery improves gait quality in patients with symptomatic lumbar spinal stenosis.
        Spine J. 2018; 18: 2195-2204https://doi.org/10.1016/j.spinee.2018.04.016
        • Meireles S.
        • De Groote F.
        • Van Rossom S.
        • Verschueren S.
        • Jonkers I.
        Differences in knee adduction moment between healthy subjects and patients with osteoarthritis depend on the knee axis definition.
        Gait Posture. 2017; 53: 104-109https://doi.org/10.1016/j.gaitpost.2017.01.013
        • Nie H.
        • Zeng J.
        • Song Y.
        • Chen G.
        • Wang X.
        • Li Z.
        • Kong Q.
        Percutaneous endoscopic lumbar discectomy for L5-S1 disc herniation via an interlaminar approach versus a transforaminal approach: a prospective randomized controlled study with 2-year follow up.
        Spine (Phila Pa 1976). 2016; 41: B30-b37https://doi.org/10.1097/brs.0000000000001810
        • Nie Y.
        • Ma J.
        • Huang Z.
        • Xu B.
        • Tang S.
        • Shen B.
        • Pei F.
        Upper partial fibulectomy improves knee biomechanics and function and decreases knee pain of osteoarthritis: a pilot and biomechanical study.
        J. Biomech. 2018; 71: 22-29https://doi.org/10.1016/j.jbiomech.2017.12.004
        • Patterson K.K.
        • Parafianowicz I.
        • Danells C.J.
        • Closson V.
        • Verrier M.C.
        • Staines W.R.
        • McIlroy W.E.
        Gait asymmetry in community-ambulating stroke survivors.
        Arch. Phys. Med. Rehabil. 2008; 89: 304-310https://doi.org/10.1016/j.apmr.2007.08.142
        • Patterson K.K.
        • Nadkarni N.K.
        • Black S.E.
        • McIlroy W.E.
        Gait symmetry and velocity differ in their relationship to age.
        Gait Posture. 2012; 35: 590-594https://doi.org/10.1016/j.gaitpost.2011.11.030
        • Qin F.
        • Zhang Z.
        • Zhang C.
        • Feng Y.
        • Zhang S.
        Effect of time to first ambulation on recurrence after PELD.
        J. Orthop. Surg. Res. 2020; 15: 83https://doi.org/10.1186/s13018-020-01608-7
        • Reininga I.H.
        • Stevens M.
        • Wagenmakers R.
        • Bulstra S.K.
        • Groothoff J.W.
        • Zijlstra W.
        Subjects with hip osteoarthritis show distinctive patterns of trunk movements during gait-a body-fixed-sensor based analysis.
        J. Neuroeng. Rehabil. 2012; 9: 1-8https://doi.org/10.1186/1743-0003-9-3
        • Robinson R.O.
        • Herzog W.
        • Nigg B.M.
        Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry.
        J. Manipulative Physiol. Ther. 1987; 10: 172-176
        • Rozanski G.M.
        • Huntley A.H.
        • Crosby L.D.
        • Schinkel-Ivy A.
        • Mansfield A.
        • Patterson K.K.
        Lower limb muscle activity underlying temporal gait asymmetry post-stroke.
        Clin. Neurophysiol. 2020; 131: 1848-1858https://doi.org/10.1016/j.clinph.2020.04.171
        • Ruetten S.
        • Komp M.
        • Merk H.
        • Godolias G.
        Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study.
        Spine (Phila Pa 1976). 2008; 33: 931-939https://doi.org/10.1097/BRS.0b013e31816c8af7
        • Schmidt A.
        • Meurer A.
        • Lenarz K.
        • Vogt L.
        • Froemel D.
        • Lutz F.
        • Stief F.
        Unilateral hip osteoarthritis: the effect of compensation strategies and anatomic measurements on frontal plane joint loading.
        J. Orthop. Res. 2017; 35: 1764-1773https://doi.org/10.1002/jor.23444
        • Shakoor N.
        • Dua A.
        • Thorp L.E.
        • Mikolaitis R.A.
        • Wimmer M.A.
        • Foucher K.C.
        • Block J.A.
        Asymmetric loading and bone mineral density at the asymptomatic knees of patients with unilateral hip osteoarthritis.
        Arthritis Rheum. 2011; 63: 3853-3858https://doi.org/10.1002/art.30626
        • Steele K.M.
        • Demers M.S.
        • Schwartz M.H.
        • Delp S.L.
        Compressive tibiofemoral force during crouch gait.
        Gait Posture. 2012; 35: 556-560https://doi.org/10.1016/j.gaitpost.2011.11.023
        • Teixeira da Cunha-Filho I.
        • Henson H.
        • Qureshy H.
        • Williams A.L.
        • Holmes S.A.
        • Protas E.J.
        Differential responses to measures of gait performance among healthy and neurologically impaired individuals.
        Arch. Phys. Med. Rehabil. 2003; 84: 1774-1779https://doi.org/10.1016/s0003-9993(03)00373-3
        • Trinler U.
        • Hollands K.
        • Jones R.
        • Baker R.
        A systematic review of approaches to modelling lower limb muscle forces during gait: applicability to clinical gait analyses.
        Gait Posture. 2018; 61: 353-361https://doi.org/10.1016/j.gaitpost.2018.02.005
        • Waanders J.B.
        • Murgia A.
        • Hortobágyi T.
        • DeVita P.
        • Franz J.R.
        How age and surface inclination affect joint moment strategies to accelerate and decelerate individual leg joints during walking.
        J. Biomech. 2020; 98: 109440https://doi.org/10.1016/j.jbiomech.2019.109440
        • Weinstein J.N.
        • Lurie J.D.
        • Tosteson T.D.
        • Skinner J.S.
        • Hanscom B.
        • Tosteson A.N.
        • Deyo R.A.
        Surgical vs nonoperative treatment for lumbar disk herniation: the spine patient outcomes research trial (SPORT) observational cohort.
        Jama. 2006; 296: 2451-2459https://doi.org/10.1001/jama.296.20.2451
        • Yokogawa N.
        • Toribatake Y.
        • Murakami H.
        • Hayashi H.
        • Yoneyama T.
        • Watanabe T.
        • Tsuchiya H.
        Differences in gait characteristics of patients with lumbar Spinal Canal stenosis (L4 radiculopathy) and those with osteoarthritis of the hip.
        PLoS One. 2015; 10e0124745https://doi.org/10.1371/journal.pone.0124745