Advertisement

Predicting the risk of postsplenectomy thrombosis in patients with portal hypertension using computational hemodynamics models: A proof-of-concept study

  • Tianqi Wang
    Affiliations
    School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    Search for articles by this author
  • Fuyou Liang
    Correspondence
    Corresponding author at: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
    Affiliations
    School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 19991, Russia
    Search for articles by this author
  • Guoping Song
    Affiliations
    Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
    Search for articles by this author
  • Jiao Guan
    Affiliations
    Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
    Search for articles by this author
  • Zunqiang Zhou
    Correspondence
    Corresponding author at: Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China.
    Affiliations
    Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
    Search for articles by this author

      Highlights

      • Low wall shear stress and prolonged flow stagnation are related to postsplenectomy thrombosis.
      • Anatomorphological features dominate hemodynamic characteristics in the portal venous system.
      • Hemodynamic analysis has potential value for assessing the risk of postsplenectomy thrombosis.

      Abstract

      Background

      The high incidence of thrombosis in the portal venous system following splenectomy (a frequently adopted surgery for treating portal hypertension in patients with splenomegaly and hypersplenism) is a critical clinical issue. The aim of this study was to address whether quantification of postsplenectomy hemodynamics has potential value for assessing the risk of postsplenectomy thrombosis.

      Methods

      Computational models were constructed for three portal hypertensive patients treated with splenectomy based on their preoperative clinical data to quantify hemodynamics in the portal venous system before and after splenectomy, respectively. Each patient was followed up for three or five months after surgery and examined with CT to screen potential thrombosis.

      Findings

      The area ratio of wall regions exposed to low wall shear stress was small before splenectomy in all patients, which increased markedly after splenectomy and exhibited enlarged inter-patient differences. The largest area ratio of low wall shear stress and most severe flow stagnation after splenectomy were predicted for the patient suffering from postsplenectomy thrombosis, with the wall regions exposed to low wall shear stress corresponding well with the CT-detected distribution of thrombus. Further analyses revealed that postoperative hemodynamic characteristics were considerably influenced by the anatomorphological features of the portal venous system.

      Interpretation

      Postoperative hemodynamic conditions in the portal venous system are highly patient-specific and have a potential link to postsplenectomy thrombosis, which indicates that patient-specific hemodynamic studies may serve as a complement to routine clinical assessments for refining risk stratification and postoperative patient management.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aktar K.
        • Islam T.
        A computational analysis of blood flow through portal vein under normal and extrahepatic obstructions.
        J. Bangladesh Acad. Sci. 2017; 41: 183-199
        • Alastruey J.
        • Siggers J.H.
        • Peiffer V.
        • Doorly D.J.
        • Sherwin S.J.
        Reducing the data: analysis of the role of vascular geometry on blood flow patterns in curved vessels.
        Phys. Fluids. 2012; 24031902
        • Anand M.
        • Rajagopal K.
        • Rajagopal K.R.
        A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood.
        J. Theore. Med. 2003; 5: 183-218
        • Audebert C.
        • Peeters G.
        • Segers P.
        • Laleman W.
        • Monbaliu D.
        • Korf H.
        • Trebicka J.
        • Vignon-Clementel I.E.
        • Debbaut C.
        Closed-loop lumped parameter modelling of hemodynamics during cirrhogenesis in rats.
        IEEE Trans. Biomed. Eng. 2018; 65: 2311-2322
        • Bergan J.J.
        • Schmid-Schönbein G.W.
        • Smith P.D.C.
        • Nicolaides A.N.
        • Boisseau M.R.
        • Eklof B.
        Chronic venous disease.
        N. Engl. J. Med. 2006; 355: 488-498
        • Chen H.Y.
        • Tien W.-S.
        • Chambers S.D.
        • Dabiri D.
        • Kassab G.S.
        Search for an optimal design of a bioprosthetic venous valve: in silico and in vitro studies.
        Eur. J. Vasc. Endovasc. Surg. 2019; 58: 112-119
        • Collaborators G.C.
        The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017.
        Lancet Gastroenterol. Hepatol. 2020; 5: 245-266
        • Downie S.P.
        • Raynor S.M.
        • Firmin D.N.
        • Wood N.B.
        • Thom S.A.
        • Hughes A.D.
        • Parker K.H.
        • Wolfe J.H.N.
        • Xu X.Y.
        Effects of elastic compression stockings on wall shear stress in deep and superficial veins of the calf.
        Am. J. Phys. Heart Circ. Phys. 2008; 294: H2112-H2120
        • Esmon C.T.
        Basic mechanisms and pathogenesis of venous thrombosis.
        Blood Rev. 2009; 23: 225-229
        • George S.M.
        • Eckert L.M.
        • Martin D.R.
        • Giddens D.P.
        Hemodynamics in normal and diseased livers: application of image-based computational models.
        Cardiovasc. Eng. Technol. 2015; 6: 80-91
        • Goel M.S.
        • Diamond S.L.
        Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma.
        Blood. 2002; 100: 3797-3803
        • Golse N.
        • Joly F.
        • Combari P.
        • Lewin M.
        • Nicolas Q.
        • Audebert C.
        • Samuel D.
        • Allard M.-A.
        • Cunha A.S.
        • Castaing D.
        • Cherqui D.
        • Adam R.
        • Vibert E.
        • Vignon-Clementel I.E.
        Predicting the risk of post-hepatectomy portal hypertension using a digital twin: a clinical proof of concept.
        J. Hepatol. 2021; 74: 661-669
        • Gorring N.
        • Kark L.
        • Simmons A.
        • Barber T.
        Determining possible thrombus sites in an extracorporeal device, using computational fluid dynamics-derived relative residence time.
        Comp. Methods Biomech. Biomed. Eng. 2015; 18: 628-634
        • Ho H.
        • Bartlett A.
        • Hunter P.
        Non-newtonian blood flow analysis for the portal vein based on a CT image.
        in: Yoshida H. Hawkes D. Vannier M.W. International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging. Springer, Berlin, Heidelberg, Nice, France2012: 283-291
        • Ho H.
        • Sorrell K.
        • Peng L.
        • Yang Z.
        • Holden A.
        • Hunter P.
        Hemodynamic analysis for transjugular intrahepatic portosystemic shunt (TIPS) in the lver based on a CT-image.
        IEEE Trans. Med. Imaging. 2013; 32: 92-98
        • Ikeda M.
        • Sekimoto M.
        • Takiguchi S.
        • Kubota M.
        • Ikenaga M.
        • Yamamoto H.
        • Fujiwara Y.
        • Ohue M.
        • Yasuda T.
        • Imamura H.
        • Tatsuta M.
        • Yano M.
        • Furukawa H.
        • Monden M.
        High incidence of thrombosis of the portal venous system after laparoscopic splenectomy: a prospective study with contrast-enhanced CT scan.
        Ann. Surg. 2005; 241: 208-216
        • Ikegami T.
        • Shimada M.
        • Imura S.
        Recent role of splenectomy in chronic hepatic disorders.
        Hepatol. Res. 2008; 38: 1159-1171
        • Johnston B.M.
        • Johnston P.R.
        • Corney S.
        • Kilpatrick D.
        Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
        J. Biomech. 2004; 37: 709-720
        • Kawanaka H.
        • Akahoshi T.
        • Kinjo N.
        • Iguchi T.
        • Ninomiya M.
        • Yamashita Y.-I.
        • Ikegami T.
        • Yoshizumi T.
        • Shirabe K.
        • Maehara Y.
        Effect of laparoscopic splenectomy on portal haemodynamics in patients with liver cirrhosis and portal hypertension.
        Br. J. Surg. 2014; 101: 1585-1593
        • Khamanarong K.
        • Woraputtaporn W.
        • Amarttayakong P.
        • Ahooja A.
        • Khuntikeo N.
        Classification of portal vein tributaries in Thai cadavers including a new type V.
        Surg. Radiol. Anat. 2016; 38: 735-739
        • Kinjo N.
        • Kawanaka H.
        • Akahoshi T.
        • Tomikawa M.
        • Yamashita N.
        • Konishi K.
        • Tanoue K.
        • Shirabe K.
        • Hashizume M.
        • Maehara Y.
        Risk factors for portal venous thrombosis after splenectomy in patients with cirrhosis and portal hypertension.
        Br. J. Surg. 2010; 97: 910-916
        • Lai W.
        • Lu S.-C.
        • Li G.-Y.
        • Li C.-Y.
        • Wu J.-S.
        • Guo Q.-L.
        • Wang M.-L.
        • Li N.
        Anticoagulation therapy prevents portal-splenic vein thrombosis after splenectomy with gastroesophageal devascularization.
        World J. Gastroenterol. 2012; 18: 3443-3450
        • Lauric A.
        • Hippelheuser J.
        • Safain M.G.
        • Malek A.M.
        Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation.
        J. Biomech. 2014; 47: 3018-3027
        • Lebrec D.
        • Sogni P.
        • Vilgrain V.
        Evaluation of patients with portal hypertension.
        Baillieres Clin. Gastroenterol. 1997; 11: 221-241
        • Leea K.E.
        • Leeb J.S.
        • Yooc J.Y.
        A numerical study on steady flow in helically sinuous vascular prostheses.
        Med. Eng. Phys. 2011; 33: 38-46
        • Li X.
        • Liu X.
        • Li X.
        • Xu L.
        • Chen X.
        • Liang F.
        Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.
        Biomech. Model. Mechanobiol. 2019; 18: 883-896
        • Malek A.M.
        • Alper S.L.
        • Izumo S.
        Hemodynamic shear stress and its role in atherosclerosis.
        J. Am. Med. Assoc. 1999; 282: 2035-2042
        • Menichini C.
        • Xu X.Y.
        Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications.
        J. Math. Biol. 2016; 73: 1205-1226
        • Menichini C.
        • Cheng Z.
        • Gibbs R.G.J.
        • Xu X.Y.
        Predicting false lumen thrombosis in patient-specific models of aortic dissection.
        J. R. Soc. Interface. 2016; 13: 20160759
        • Moustafa A.
        • Alim H.M.
        • Chowdhury M.A.
        • Eltahawy E.A.
        Postthrombotic syndrome: long-term sequela of deep venous thrombosis.
        Am J Med Sci. 2018; 365: 152-158
        • Murray C.D.
        The physiological principle of minimum work. I. the vascular system and the cost of blood volume.
        Proc. Natl. Acad. Sci. U. S. A. 1926; 12: 207-214
        • Mynard J.P.
        • Steinman D.A.
        Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity.
        Ultrasound Med. Biol. 2013; 39: 870-881
        • Oktar S.O.
        • Yücel C.
        • Karaosmanoglu D.
        • Akkan K.
        • Ozdemir H.
        • Tokgoz N.
        • Tali T.
        Blood-flow volume quantification in internal carotid and vertebral arteries: comparison of 3 different ultrasound techniques with phase-contrast MR imaging.
        Am. J. Neuroradiol. 2006; 27: 363-369
        • Peeters G.
        • Debbaut C.
        • Cornillie P.
        • De Schryver T.
        • Monbaliu D.
        • Laleman W.
        • Segers P.
        A multilevel modeling framework to study hepatic perfusion characteristics in case of liver cirrhosis.
        J. Biomech. Eng. 2015; 137051007
        • Petkova S.
        • Hossain A.
        • Naser J.
        • Palombo E.
        CFD modelling of blood flow in portal vein hypertension with and without thrombosis.
        in: Third International Conference on CFD in the Minerals and Process Industries. Commonwealth Scientific and Industrial Research Organization (CSIRO), Melbourne, Australia2003
        • Piatti F.
        • Sturla F.
        • Marom G.
        • Sheriff J.
        • Claiborne T.E.
        • Slepian M.J.
        • Redaelli A.
        • Bluestein D.
        Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach.
        J. Biomech. 2015; 48: 3641-3649
        • Piccinelli M.
        • Veneziani A.
        • Steinman D.A.
        • Remuzzi A.
        • Antiga L.
        A framework for feometric analysis of vascular structures: application to cerebral aneurysms.
        IEEE Trans. Med. Imaging. 2009; 28: 1141-1155
        • Poredos P.
        • Jezovnik M.K.
        Endothelial dysfunction and venous thrombosis.
        Angiology. 2018; 69: 564-567
        • Purcell H.K.
        • Connor J.J.
        • Alexander W.F.
        • Scully N.M.
        Observations on the major radicles of the extrahepatic portal systems.
        Arch. Surg. 1951; 62: 670-677
        • Qi X.
        • Han G.
        • Ye C.
        • Zhang Y.
        • Dai J.
        • Peng Y.
        • Deng H.
        • Li J.
        • Hou F.
        • Ning Z.
        • Zhao J.
        • Zhang X.
        • Wang R.
        • Guo X.
        Splenectomy causes 10-fold increased risk of portal venous system thrombosis in liver cirrhosis patients.
        Med. Sci. Monit. 2016; 22: 2528-2550
        • Qi X.
        • An W.
        • Liu F.
        • Qi R.
        • Wang L.
        • Liu Y.
        • Liu C.
        • Xiang Y.
        • Hui J.
        • Liu Z.
        • Qi X.
        • Liu C.
        • Peng B.
        • Ding H.
        • Yang Y.
        • He X.
        • Hou J.
        • Tian J.
        • Li Z.
        Virtual hepatic venous pressure gradient with CT angiography (CHESS 1601): a prospective multicenter study for the noninvasive diagnosis of portal hypertension.
        Radiology. 2019; 290: 370-377
        • Rasche H.
        Haemostasis and thrombosis: an overview.
        Eur. Heart J. Suppl. 2001; 3: Q3-Q7
        • Rayz V.L.
        • Boussel L.
        • Ge L.
        • Leach J.R.
        • Martin A.J.
        • Lawton M.T.
        • Mcculloch C.
        • Saloner D.
        Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms.
        Ann. Biomed. Eng. 2010; 38: 3058-3069
        • Rosendaal F.R.
        Venous thrombosis: a multicausal disease.
        Lancet. 1993; 353: 1167-1173
        • Ruiz-Tovar J.
        • Priego P.
        Lambris J.D. Crusio W. Rezaei N. Portal vein thrombosis after splenic and pancreatic surgery. Advances in Experimental Medicine and Biology, 2016: 241-251
        • Sakaguchi T.
        • Suzuki S.
        • Morita Y.
        • Oishi K.
        • Suzuki A.
        • Fukumoto K.
        • Inaba K.
        • Kamiya K.
        • Ota M.
        • Setoguchi T.
        • Takehara Y.
        • Nasu H.
        • Nakamura S.
        • Konno H.
        Analysis of anatomic variants of mesenteric veins by 3-dimensional portography using multidetector-row computed tomography.
        Am. J. Surg. 2010; 200: 15-22
        • Sobhonslidsuk A.
        • Reddy K.R.
        Portal vein thrombosis: a concise review.
        Am. J. Gastroenterol. 2002; 97: 535-541
        • Sugano S.
        • Yamamoto K.
        • Sasao K.
        • Watanabe M.
        Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhosis.
        J. Gastroenterol. 1999; 34: 613-618
        • Sun X.
        • Ma T.
        • Liu Z.
        • Wu X.
        • Zhang B.
        • Zhu S.
        • Li F.
        • Chen M.
        • Zheng Y.
        • Liu X.
        Sequential numerical simulation of vascular remodeling and thrombosis in unconventional hybrid repair of ruptured middle aortic syndrome.
        Med. Eng. Phys. 2021; 94: 87-95
        • Taylor C.A.
        • Steinman D.A.
        Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions.
        Ann. Biomed. Eng. 2010; 38: 1188-1203
        • Thomas J.B.
        • Milner J.S.
        • Rutt B.K.
        • Steinman D.A.
        Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation.
        Ann. Biomed. Eng. 2003; 31: 132-141
        • Tsamalaidze L.
        • Stauffer J.A.
        • Brigham T.
        • Asbun H.J.
        Postsplenectomy thrombosis of splenic, mesenteric, and portal vein (PST-SMPv): a single institutional series, comprehensive systematic review of a literature and suggested classification.
        Am. J. Surg. 2018; 216: 1192-1204
        • Ushitora Y.
        • Tashiro H.
        • Takahashi S.
        • Amano H.
        • Oshita A.
        • Kobayashi T.
        • Chayama K.
        • Ohdan H.
        Splenectomy in chronic hepatic disorders: portal vein thrombosis and improvement of liver function.
        Dig. Surg. 2011; 28: 9-14
        • Vorobtsova N.
        • Chiastra C.
        • Stremler M.A.
        • Sane D.C.
        • Migliavacca F.
        • Vlachos P.
        Effects of vessel tortuosity on coronary hemodynamics: an idealized and patient-specific computational study.
        Ann. Biomed. Eng. 2016; 44: 2228-2239
        • Wang T.
        • Liang F.
        • Zhou Z.
        • Shi L.
        A computational model of the hepatic circulation applied to analyze the sensitivity of hepatic venous pressure gradient (HVPG) in liver cirrhosis.
        J. Biomech. 2017; 65: 23-31
        • Wang T.
        • Liang F.
        • Zhou Z.
        • Qi X.
        Global sensitivity analysis of hepatic venous pressure gradient (HVPG) measurement with a stochastic computational model of the hepatic circulation.
        Comput. Biol. Med. 2018; 97: 124-136
        • Wang T.
        • Liang F.
        • Li L.
        • Zhang W.
        • Wang G.
        • Wang J.
        • Zhang C.
        • Qi X.
        A computational model-based study on the exchangeability of hepatic venous pressure gradients measured in multiple hepatic veins.
        Med. Eng. Phys. 2020; 84: 28-35
        • Wang T.
        • Zhou Z.
        • Liang F.
        Influences of anatomorphological features of the portal venous system on postsplenectomy hemodynamic characteristics in patients with portal hypertension: a computational model-based study.
        Front. Physiol. 2021; 12661030
        • Wang X.
        • Li G.
        • Chen B.
        • Pu Y.
        • Nie P.
        • Li X.
        • Li Z.
        • Su K.
        Numerical simulation of hemodynamics in portal vein with thrombosis by computational fluid dynamics.
        J. Mech. Med. Biol. 2014; 14: 1440006
        • Winslow E.R.
        • Brunt L.M.
        • Drebin J.A.
        • Soper N.J.
        • Klingensmith M.E.
        Portal vein thrombosis after splenectomy.
        Am. J. Surg. 2002; 184: 631-636
        • Zhang N.
        • Yao Y.
        • Xue W.
        • Wu S.
        Early prophylactic anticoagulation for portal vein system thrombosis after splenectomy: a systematic review and meta-analysis.
        Biomed. Reports. 2016; 5: 483-490
        • Zhou H.
        • Gong P.
        • Du X.
        • Wang M.
        Analysis and computational fluid dynamics simulation of hemodynamic influences caused by splenic vein thrombosis.
        J. Biomed. Eng. 2015; 32: 43-47
        • Zhou X.
        • Yin L.
        • Xu L.
        • Liang F.
        Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: an in vivo measurement-based computational study.
        J. Biomech. 2020; 101109617