Highlights
- •Low wall shear stress and prolonged flow stagnation are related to postsplenectomy thrombosis.
- •Anatomorphological features dominate hemodynamic characteristics in the portal venous system.
- •Hemodynamic analysis has potential value for assessing the risk of postsplenectomy thrombosis.
Abstract
Background
The high incidence of thrombosis in the portal venous system following splenectomy
(a frequently adopted surgery for treating portal hypertension in patients with splenomegaly
and hypersplenism) is a critical clinical issue. The aim of this study was to address
whether quantification of postsplenectomy hemodynamics has potential value for assessing
the risk of postsplenectomy thrombosis.
Methods
Computational models were constructed for three portal hypertensive patients treated
with splenectomy based on their preoperative clinical data to quantify hemodynamics
in the portal venous system before and after splenectomy, respectively. Each patient
was followed up for three or five months after surgery and examined with CT to screen
potential thrombosis.
Findings
The area ratio of wall regions exposed to low wall shear stress was small before splenectomy
in all patients, which increased markedly after splenectomy and exhibited enlarged
inter-patient differences. The largest area ratio of low wall shear stress and most
severe flow stagnation after splenectomy were predicted for the patient suffering
from postsplenectomy thrombosis, with the wall regions exposed to low wall shear stress
corresponding well with the CT-detected distribution of thrombus. Further analyses
revealed that postoperative hemodynamic characteristics were considerably influenced
by the anatomorphological features of the portal venous system.
Interpretation
Postoperative hemodynamic conditions in the portal venous system are highly patient-specific
and have a potential link to postsplenectomy thrombosis, which indicates that patient-specific
hemodynamic studies may serve as a complement to routine clinical assessments for
refining risk stratification and postoperative patient management.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Clinical BiomechanicsAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- A computational analysis of blood flow through portal vein under normal and extrahepatic obstructions.J. Bangladesh Acad. Sci. 2017; 41: 183-199
- Reducing the data: analysis of the role of vascular geometry on blood flow patterns in curved vessels.Phys. Fluids. 2012; 24031902
- A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood.J. Theore. Med. 2003; 5: 183-218
- Closed-loop lumped parameter modelling of hemodynamics during cirrhogenesis in rats.IEEE Trans. Biomed. Eng. 2018; 65: 2311-2322
- Chronic venous disease.N. Engl. J. Med. 2006; 355: 488-498
- Search for an optimal design of a bioprosthetic venous valve: in silico and in vitro studies.Eur. J. Vasc. Endovasc. Surg. 2019; 58: 112-119
- The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017.Lancet Gastroenterol. Hepatol. 2020; 5: 245-266
- Effects of elastic compression stockings on wall shear stress in deep and superficial veins of the calf.Am. J. Phys. Heart Circ. Phys. 2008; 294: H2112-H2120
- Basic mechanisms and pathogenesis of venous thrombosis.Blood Rev. 2009; 23: 225-229
- Hemodynamics in normal and diseased livers: application of image-based computational models.Cardiovasc. Eng. Technol. 2015; 6: 80-91
- Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma.Blood. 2002; 100: 3797-3803
- Predicting the risk of post-hepatectomy portal hypertension using a digital twin: a clinical proof of concept.J. Hepatol. 2021; 74: 661-669
- Determining possible thrombus sites in an extracorporeal device, using computational fluid dynamics-derived relative residence time.Comp. Methods Biomech. Biomed. Eng. 2015; 18: 628-634
- Non-newtonian blood flow analysis for the portal vein based on a CT image.in: Yoshida H. Hawkes D. Vannier M.W. International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging. Springer, Berlin, Heidelberg, Nice, France2012: 283-291
- Hemodynamic analysis for transjugular intrahepatic portosystemic shunt (TIPS) in the lver based on a CT-image.IEEE Trans. Med. Imaging. 2013; 32: 92-98
- High incidence of thrombosis of the portal venous system after laparoscopic splenectomy: a prospective study with contrast-enhanced CT scan.Ann. Surg. 2005; 241: 208-216
- Recent role of splenectomy in chronic hepatic disorders.Hepatol. Res. 2008; 38: 1159-1171
- Non-Newtonian blood flow in human right coronary arteries: steady state simulations.J. Biomech. 2004; 37: 709-720
- Effect of laparoscopic splenectomy on portal haemodynamics in patients with liver cirrhosis and portal hypertension.Br. J. Surg. 2014; 101: 1585-1593
- Classification of portal vein tributaries in Thai cadavers including a new type V.Surg. Radiol. Anat. 2016; 38: 735-739
- Risk factors for portal venous thrombosis after splenectomy in patients with cirrhosis and portal hypertension.Br. J. Surg. 2010; 97: 910-916
- Anticoagulation therapy prevents portal-splenic vein thrombosis after splenectomy with gastroesophageal devascularization.World J. Gastroenterol. 2012; 18: 3443-3450
- Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation.J. Biomech. 2014; 47: 3018-3027
- Evaluation of patients with portal hypertension.Baillieres Clin. Gastroenterol. 1997; 11: 221-241
- A numerical study on steady flow in helically sinuous vascular prostheses.Med. Eng. Phys. 2011; 33: 38-46
- Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.Biomech. Model. Mechanobiol. 2019; 18: 883-896
- Hemodynamic shear stress and its role in atherosclerosis.J. Am. Med. Assoc. 1999; 282: 2035-2042
- Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications.J. Math. Biol. 2016; 73: 1205-1226
- Predicting false lumen thrombosis in patient-specific models of aortic dissection.J. R. Soc. Interface. 2016; 13: 20160759
- Postthrombotic syndrome: long-term sequela of deep venous thrombosis.Am J Med Sci. 2018; 365: 152-158
- The physiological principle of minimum work. I. the vascular system and the cost of blood volume.Proc. Natl. Acad. Sci. U. S. A. 1926; 12: 207-214
- Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity.Ultrasound Med. Biol. 2013; 39: 870-881
- Blood-flow volume quantification in internal carotid and vertebral arteries: comparison of 3 different ultrasound techniques with phase-contrast MR imaging.Am. J. Neuroradiol. 2006; 27: 363-369
- A multilevel modeling framework to study hepatic perfusion characteristics in case of liver cirrhosis.J. Biomech. Eng. 2015; 137051007
- CFD modelling of blood flow in portal vein hypertension with and without thrombosis.in: Third International Conference on CFD in the Minerals and Process Industries. Commonwealth Scientific and Industrial Research Organization (CSIRO), Melbourne, Australia2003
- Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach.J. Biomech. 2015; 48: 3641-3649
- A framework for feometric analysis of vascular structures: application to cerebral aneurysms.IEEE Trans. Med. Imaging. 2009; 28: 1141-1155
- Endothelial dysfunction and venous thrombosis.Angiology. 2018; 69: 564-567
- Observations on the major radicles of the extrahepatic portal systems.Arch. Surg. 1951; 62: 670-677
- Splenectomy causes 10-fold increased risk of portal venous system thrombosis in liver cirrhosis patients.Med. Sci. Monit. 2016; 22: 2528-2550
- Virtual hepatic venous pressure gradient with CT angiography (CHESS 1601): a prospective multicenter study for the noninvasive diagnosis of portal hypertension.Radiology. 2019; 290: 370-377
- Haemostasis and thrombosis: an overview.Eur. Heart J. Suppl. 2001; 3: Q3-Q7
- Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms.Ann. Biomed. Eng. 2010; 38: 3058-3069
- Venous thrombosis: a multicausal disease.Lancet. 1993; 353: 1167-1173
- Lambris J.D. Crusio W. Rezaei N. Portal vein thrombosis after splenic and pancreatic surgery. Advances in Experimental Medicine and Biology, 2016: 241-251
- Analysis of anatomic variants of mesenteric veins by 3-dimensional portography using multidetector-row computed tomography.Am. J. Surg. 2010; 200: 15-22
- Portal vein thrombosis: a concise review.Am. J. Gastroenterol. 2002; 97: 535-541
- Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhosis.J. Gastroenterol. 1999; 34: 613-618
- Sequential numerical simulation of vascular remodeling and thrombosis in unconventional hybrid repair of ruptured middle aortic syndrome.Med. Eng. Phys. 2021; 94: 87-95
- Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions.Ann. Biomed. Eng. 2010; 38: 1188-1203
- Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation.Ann. Biomed. Eng. 2003; 31: 132-141
- Postsplenectomy thrombosis of splenic, mesenteric, and portal vein (PST-SMPv): a single institutional series, comprehensive systematic review of a literature and suggested classification.Am. J. Surg. 2018; 216: 1192-1204
- Splenectomy in chronic hepatic disorders: portal vein thrombosis and improvement of liver function.Dig. Surg. 2011; 28: 9-14
- Effects of vessel tortuosity on coronary hemodynamics: an idealized and patient-specific computational study.Ann. Biomed. Eng. 2016; 44: 2228-2239
- A computational model of the hepatic circulation applied to analyze the sensitivity of hepatic venous pressure gradient (HVPG) in liver cirrhosis.J. Biomech. 2017; 65: 23-31
- Global sensitivity analysis of hepatic venous pressure gradient (HVPG) measurement with a stochastic computational model of the hepatic circulation.Comput. Biol. Med. 2018; 97: 124-136
- A computational model-based study on the exchangeability of hepatic venous pressure gradients measured in multiple hepatic veins.Med. Eng. Phys. 2020; 84: 28-35
- Influences of anatomorphological features of the portal venous system on postsplenectomy hemodynamic characteristics in patients with portal hypertension: a computational model-based study.Front. Physiol. 2021; 12661030
- Numerical simulation of hemodynamics in portal vein with thrombosis by computational fluid dynamics.J. Mech. Med. Biol. 2014; 14: 1440006
- Portal vein thrombosis after splenectomy.Am. J. Surg. 2002; 184: 631-636
- Early prophylactic anticoagulation for portal vein system thrombosis after splenectomy: a systematic review and meta-analysis.Biomed. Reports. 2016; 5: 483-490
- Analysis and computational fluid dynamics simulation of hemodynamic influences caused by splenic vein thrombosis.J. Biomed. Eng. 2015; 32: 43-47
- Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: an in vivo measurement-based computational study.J. Biomech. 2020; 101109617
Article info
Publication history
Published online: July 09, 2022
Accepted:
July 6,
2022
Received:
February 10,
2021
Identification
Copyright
© 2022 Elsevier Ltd. All rights reserved.