Advertisement

Biomechanical compensations during a stand-to-sit maneuver using transfemoral osseointegrated prostheses: A case series

      Highlights

      • Socket prostheses change joint biomechanics and increase the risk of overuse injury.
      • Osseointegrated prostheses normalize lumbopelvic biomechanics during sitting tasks.
      • Osseointegrated prostheses likely reduce the risk of joint overuse injury.

      Abstract

      Background

      Patients with transfemoral amputation and socket prostheses are at a heightened risk of developing musculoskeletal overuse injuries, commonly due to altered joint biomechanics. Osseointegrated prostheses, which involve direct anchorage of the prosthesis to the residual limb through a bone anchored prosthesis, are a novel alternative to sockets yet their biomechanical effect is largely unknown.

      Methods

      Four patients scheduled to undergo unilateral transfemoral prosthesis osseointegration completed two data collections (baseline with socket prosthesis and 12-months after prosthesis osseointegration) in which whole-body kinematics and ground reaction forces were collected during stand-to-sit tasks. Trunk, pelvis, and hip kinematics, and the surrounding muscle forces, were calculated using subject-specific musculoskeletal models developed in OpenSim. Peak joint angles and muscle forces were compared between timepoints using Cohen's d effect sizes.

      Findings

      Compared to baseline with socket prostheses, patients with osseointegrated prostheses demonstrated reduced lateral trunk bending (d = 1.46), pelvic obliquity (d = 1.09), and rotation (d = 1.77) toward the amputated limb during the stand to sit task. This was accompanied by increased amputated limb hip flexor, abductor, and rotator muscle forces (d> > 0.8).

      Interpretation

      Improved lumbopelvic movement patterns and stabilizing muscle forces when using an osseointegrated prosthesis indicate that this novel prosthesis type likely reduces the risk of the development and/or progression of overuse injuries, such as low back pain and osteoarthritis. We attribute the increased muscle hip muscle forces to the increased load transmission between the osseointegrated prosthesis and residual limb, which allows a greater eccentric ability of the amputated limb to control lowering during the stand-to-sit task.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amaro A.
        • Amado F.
        • Duarte J.A.
        • Appell H.J.
        Gluteus medius muscle atrophy is related to contralateral and ipsilateral hip joint osteoarthritis.
        Int. J. Sports Med. 2007; 28: 1035-1039https://doi.org/10.1055/s-2007-965078
        • Anderson F.C.
        • Pandy M.G.
        Static and dynamic optimization solutions for gait are practically equivalent.
        J. Biomech. 2001; 34: 153-161
        • Aschoff H.H.
        • Clausen A.T.H.
        The endo-exo femur prosthesis--a new concept of bone-guided, prosthetic rehabilitation following above-knee amputation.
        Z. Orthop. Unfall. 2009; 147: 610-615
        • Branemark P.I.
        Osseointegration and its experimental background.
        J. Prosthet. Dent. 1983; 50: 399-410https://doi.org/10.1016/S0022-3913(83)80101-2
        • Brånemark R.
        • Brånemark P.I.
        • Rydevik B.
        • Myers R.R.
        Osseointegration in skeletal reconstruction and rehabilitation: a review.
        J. Rehabil. Res. Dev. 2001; 38: 175-181
        • Christensen J.C.
        • Kline P.W.
        • Murray A.M.
        • Christiansen C.L.
        Movement asymmetry during low and high demand mobility tasks after dysvascular transtibial amputation.
        Clin. Biomech. 2020; 80105102https://doi.org/10.1016/j.clinbiomech.2020.105102
        • Convery P.
        • Murray K.D.
        Ultrasound study of the motion of the residual femur within a trans-femoral socket during daily living activities other than gait.
        Prosthetics Orthot. Int. 2001; 25: 220-227https://doi.org/10.1080/03093640108726605
        • Correa T.
        • Crossley K.M.
        • Kim H.J.
        • Pandy M.G.
        Contributions of individual muscles to hip joint contact force in normal walking.
        J. Biomech. 2010; 43: 1618-1622https://doi.org/10.1016/j.jbiomech.2010.02.008
        • Correa T.A.
        • Crossley K.M.
        • Kim H.J.
        • Pandy M.G.
        Contributions of individual muscles to hip joint contact force in normal walking.
        J. Biomech. 2010; 43: 1618-1622https://doi.org/10.1016/j.jbiomech.2010.02.008
        • Crowninshield R.D.
        • Johnston R.C.
        • Brand R.A.
        • Pedersen D.R.
        Pathologic ligamentous constraint of the hip.
        Clin. Orthop. Relat. Res. 1983; 181: 291-297
        • Davis K.G.
        • Marras W.S.
        The effects of motion on trunk biomechanics.
        Clin. Biomech. 2000; 15: 703-717https://doi.org/10.1016/S0268-0033(00)00035-8
        • Delp S.L.
        • Anderson F.C.
        • Arnold A.S.
        • Loan P.
        • Habib A.
        • John C.T.
        • Guendelman E.
        • Thelen D.G.
        OpenSim: open-source software to create and analyze dynamic simulations of movement.
        IEEE Trans. Biomed. Eng. 2007; 54: 1940-1950https://doi.org/10.1109/TBME.2007.901024
        • Dillingham T.R.
        • Pezzin L.E.
        • MacKenzie E.J.
        • Burgess A.R.
        Prosthetic devices among persons.
        Am. J. Phys. Med. Rehabil. 2001; 80: 563-571
        • Erdemir A.
        • Mclean S.
        • Herzog W.
        • Bogert A.J. Van Den
        Model-Based Estimation of Muscle Forces Exerted during Movements.
        22. 2007: 131-154https://doi.org/10.1016/j.clinbiomech.2006.09.005
        • Frossard L.
        • Hagberg K.
        • Häggström E.
        • Gow D.L.
        • Brånemark R.
        • Pearcy M.
        Functional outcome of transfemoral amputees fitted with an osseointegrated fixation: temporal gait characteristics.
        J. Prosthetics Orthot. 2010; 22: 11-20https://doi.org/10.1097/JPO.0b013e3181ccc53d
        • Frossard L.A.
        • Tranberg R.
        • Haggstrom E.
        • Pearcy M.
        • Brnemark R.
        Load on osseointegrated fixation of a transfemoral amputee during a fall: loading, descent, impact and recovery analysis.
        Prosthetics Orthot. Int. 2010; 34: 85-97https://doi.org/10.3109/03093640903585024
        • Gaffney B.M.M.
        • Christiansen C.L.
        • Murray A.M.
        • Davidson B.S.
        Trunk kinetic effort during step ascent and descent in patients with transtibial amputation using angular momentum separation.
        Clin. Biomech. 2017; 48: 88-96https://doi.org/10.1016/j.clinbiomech.2017.07.014
        • Gaffney B.M.M.
        • Christiansen C.L.
        • Murray A.M.
        • Davidson B.S.
        Trunk movement compensations and corresponding core muscle demand during step ambulation in people with unilateral transtibial amputation.
        J. Electromyogr. Kinesiol. 2018; 39: 16-25https://doi.org/10.1016/j.jelekin.2018.01.002
        • Gailey R.
        • Allen K.
        • Castles J.
        • Kucharik J.
        • Roeder M.
        Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use.
        J. Rehabil. Res. Dev. 2008; 45 (doi:mu): 15-30
        • Goujon-Pillet H.
        • Sapin E.
        • Fode P.
        • Lavaste F.
        Three-dimensional motions of trunk and pelvis during Transfemoral amputee gait.
        Arch. Phys. Med. Rehabil. 2008; 89: 87-94https://doi.org/10.1016/j.apmr.2007.08.136
        • Griffin T.M.
        • Guilak F.
        The role of mechanical loading in the onset and progression of osteoarthritis.
        Exerc. Sport Sci. Rev. 2005; 33: 195-200https://doi.org/10.1097/00003677-200510000-00008
        • Hagberg K.
        • Häggström E.
        • Uden M.
        • Brånemark R.
        Socket versus bone-anchored trans-femoral prostheses: hip range of motion and sitting comfort.
        Prosthetics Orthot. Int. 2005; 29: 153-163https://doi.org/10.1080/03093640500238014
        • Hagberg K.
        • Häggström E.
        • Jönsson S.
        • Rydevik B.
        • Brånemark R.
        Osseoperception and Osseointegrated Prosthetic Limbs.
        Psychoprosthetics, Springer, London2008
        • Harandi V.J.
        • Ackland D.C.
        • Haddara R.
        • Lizama L.E.C.
        • Graf M.
        • Galea M.P.
        • Lee P.V.S.
        Gait compensatory mechanisms in unilateral transfemoral amputees.
        Med. Eng. Phys. 2020; 77: 95-106https://doi.org/10.1016/j.medengphy.2019.11.006
        • Harandi V.J.
        • Ackland D.C.
        • Haddara R.
        • Lizama L.E.C.
        • Graf M.
        • Galea M.P.
        • Lee P.V.S.
        Individual muscle contributions to hip joint-contact forces during walking in unilateral transfemoral amputees with osseointegrated prostheses.
        Comput. Methods Biomech. Biomed. Eng. 2020; 23: 1-11https://doi.org/10.1080/10255842.2020.1786686
        • Harandi V.J.
        • Ackland D.C.
        • Haddara R.
        • Lizama L.E.C.
        • Graf M.
        • Galea M.P.
        • Lee P.V.S.
        Gait compensatory mechanisms in unilateral transfemoral amputees.
        Med. Eng. Phys. 2020; 77: 95-106https://doi.org/10.1016/j.medengphy.2019.11.006
        • Harris J.P.
        • Page S.
        • England R.
        • May J.
        Is the outlook for the vascular amputee improved by striving to preserve the knee?.
        J. Cardiovasc. Surg. 1988; 29: 741-745
        • Harris M.D.
        • MacWilliams B.A.
        • Foreman K.B.
        • Peters C.L.
        • Weiss J.A.
        • Anderson A.E.
        Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: a comparative study using subject-specific musculoskeletal models.
        J. Biomech. 2017; 54: 80-87https://doi.org/10.1016/j.jbiomech.2017.01.040
        • Harris M.D.
        • Shepherd M.C.
        • Song K.
        • Gaffney B.M.M.
        • Hillen T.J.
        • Harris-Hayes M.
        • Clohisy J.C.
        The biomechanical disadvantage of dysplastic hips.
        J. Orthop. Res. 2021; https://doi.org/10.1002/jor.25165
        • Heitzmann D.W.W.
        • Leboucher J.
        • Block J.
        • Günther M.
        • Putz C.
        • Götze M.
        • Wolf S.I.
        • Alimusaj M.
        The influence of hip muscle strength on gait in individuals with a unilateral transfemoral amputation.
        PLoS One. 2020; 15: 1-16https://doi.org/10.1371/journal.pone.0238093
        • Hendershot B.D.
        • Wolf E.J.
        Three-dimensional joint reaction forces and moments at the low back during over-ground walking in persons with unilateral lower-extremity amputation.
        Clin. Biomech. 2014; 29: 235-242https://doi.org/10.1016/j.clinbiomech.2013.12.005
        • Hicks J.L.
        • Uchida T.K.
        • Seth A.
        • Rajagopal A.
        • Delp S.
        Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of human movement.
        J. Biomech. Eng. 2015; 137https://doi.org/10.1115/1.4029304
        • Hurley M.V.
        The role of muscle weakness in the pathogenesis of osteoarthritis.
        Rheum. Dis. Clin. N. Am. 1999; 25: 283-298https://doi.org/10.1016/S0889-857X(05)70068-5
        • Jaegers S.M.H.J.
        • Arendzen J.H.
        • de Jongh H.J.
        Prosthetic gait of unilateral transfemoral amputees: a kinematic study.
        Arch. Phys. Med. Rehabil. 1995; 76: 736-743https://doi.org/10.1016/S0003-9993(95)80528-1
        • Jaegers S.M.H.J.
        • Arendzen J.H.
        • de Jongh H.J.
        Changes in hip muscles after above-knee amputation.
        Clin. Orthop. Relat. Res. 1995; : 276-284https://doi.org/10.1097/00003086-199510000-00030
        • Janssen W.G.M.
        • Bussmann H.B.J.
        • Stam H.J.
        Research report determinants of the sit-to-stand movement : a review.
        Phys. Ther. 2002; 82: 866-879
        • Kibler W.B.
        • Press J.
        • Sciascia A.
        The role of core stability in athletic function.
        Sports Med. 2006; 36: 189-198
        • Kulkarni J.
        • Adams J.
        • Thomas E.
        • Silman A.
        Association between amputation, arthritis and osteopenia in British male war veterans with major lower limb amputations.
        Clin. Rehabil. 1998; 12: 274-279https://doi.org/10.1191/026921598668452322
        • Lai A.K.M.
        • Arnold A.S.
        • Wakeling J.M.
        Why are antagonist muscles co-activated in my simulation? A musculoskeletal model for analysing human locomotor tasks.
        Ann. Biomed. Eng. 2017; 45: 2762-2774https://doi.org/10.1007/s10439-017-1920-7
        • Lee W.C.C.
        • Frossard L.A.
        • Hagberg K.
        • Haggstrom E.
        • Brånemark R.
        • Evans J.H.
        • Pearcy M.J.
        Kinetics of transfemoral amputees with osseointegrated fixation performing common activities of daily living.
        Clin. Biomech. 2007; 22: 665-673https://doi.org/10.1016/j.clinbiomech.2007.02.005
        • Leijendekkers R.A.
        • van Hinte G.
        • der Sanden M.W.G.N.
        • Staal J.B.
        Gait rehabilitation for a patient with an osseointegrated prosthesis following transfemoral amputation.
        Physiother. Theory Pract. 2017; 33: 147-161https://doi.org/10.1080/09593985.2016.1265620
        • Leijendekkers R.A.
        • Marra M.A.
        • Ploegmakers M.J.M.
        • Van Hinte G.
        • Frölke J.P.
        • Van De Meent H.
        • Staal J.B.
        • Hoogeboom T.J.
        • Verdonschot N.
        Magnetic-resonance-imaging-based three-dimensional muscle reconstruction of hip abductor muscle volume in a person with a transfemoral bone-anchored prosthesis: a feasibility study.
        Physiother. Theory Pract. 2019; 35: 495-504https://doi.org/10.1080/09593985.2018.1453902
        • Li Y.
        • Brånemark R.
        Osseintegrated protheses for rehabilitation following amputation.
        Unfallchirurg. 2017; 120: 285-292https://doi.org/10.1007/s00113-017-0331-4
        • Van Meent H.
        • De Hopman M.T.
        • Frölke J.P.
        Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses.
        Arch. Phys. Med. Rehabil. 2013; 94: 2174-2178https://doi.org/10.1016/j.apmr.2013.05.020
        • Michaud S.B.
        • Gard S.A.
        • Childress D.S.
        A preliminary investigation of pelvic obliquity patterns during gait in persons with transtibial and transfemoral amputation.
        J. Rehabil. Res. Dev. 2000; 37: 1-10
        • Molina-Rueda F.
        • Alguacil-Diego I.M.
        • Cuesta-Gómez A.
        • Iglesias-Giménez J.
        • Martín-Vivaldi A.
        • Miangolarra-Page J.C.
        Thorax, pelvis and hip pattern in the frontal plane during walking in unilateral transtibial amputees: biomechanical analysis.
        Braz. J. Phys. Ther. 2014; 18: 252-258https://doi.org/10.1590/bjpt-rbf.2014.0032
        • Morgenroth D.C.
        • Gellhorn A.C.
        • Suri P.
        Osteoarthritis in the disabled population : a mechanical perspective.
        Phys. Med. Rehabil. 2012; 4: S20-S27https://doi.org/10.1016/j.pmrj.2012.01.003
        • Myers C.A.
        • Laz P.J.
        • Shelburne K.B.
        • Judd D.L.
        • Winters J.D.
        • Stevens-Lapsley J.E.
        • Davidson B.S.
        Simulated hip abductor strengthening reduces peak joint contact forces in patients with total hip arthroplasty.
        J. Biomech. 2019; 93: 18-27https://doi.org/10.1016/j.jbiomech.2019.06.003
        • Netter F.H.
        Atlas of Human Anatomy.
        2014
        • Nolan L.
        • Lees A.
        The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees.
        Prosthetics Orthot. Int. 2000; 24: 117-125
        • Nolan L.
        • Wit A.
        • Dudziñski K.
        • Lees A.
        • Lake M.
        • Wychowañski M.
        Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees.
        Gait Posture. 2003; 17: 142-151
        • Penn-Barwell J.G.
        Outcomes in lower limb amputation following trauma: a systematic review and meta-analysis.
        Injury. 2011; 42: 1474-1479https://doi.org/10.1016/j.injury.2011.07.005
        • Rizzo R.
        • Matsumota T.
        Above vs. below knee amputations: a retrospective analysis.
        Int. Surg. 1980; 65: 265-267
        • Robinson D.L.
        • Safai L.
        • Harandi V.J.
        • Graf M.
        • Lizama L.E.C.
        • Lee P.
        • Galea M.P.
        • Khan F.
        • Tse K.M.
        • Ackland D.C.
        Load response of an osseointegrated implant used in the treatment of unilateral transfemoral amputation: an early implant loosening case study.
        Clin. Biomech. 2020; 73: 201-212https://doi.org/10.1016/j.clinbiomech.2020.01.017
        • Roy G.
        • Nadeau S.
        • Gravel D.
        • Malouin F.
        • McFadyen B.J.
        • Piotte F.
        The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis.
        Clin. Biomech. 2006; 21: 585-593https://doi.org/10.1016/j.clinbiomech.2006.01.007
        • Segal A.D.
        • Orendurff M.S.
        • Klute G.K.
        • McDowell M.L.
        • Pecoraro J.A.
        • Shofer J.
        • Czerniecki J.M.
        Kinematic and kinetic comparisons of transfemoral amputee gait using C-leg® and Mauch SNS® prosthetic knees.
        J. Rehabil. Res. Dev. 2006; 43: 857-870https://doi.org/10.1682/JRRD.2005.09.0147
        • Shakoor N.
        • Furmanov S.
        • Nelson D.E.
        • Li Y.
        • Block J.A.
        Pain and its relationship with muscle strength and proprioception in knee OA: results of an 8-week home exercise pilot study.
        J. Musculoskelet. Neuronal Interact. 2008; 8: 35-42
        • Shojaei I.
        • Hendershot B.D.
        • Acasio J.C.
        • Dearth C.L.
        • Ballard M.
        • Bazrgari B.
        Trunk muscle forces and spinal loads in persons with unilateral transfemoral amputation during sit-to-stand and stand-to-sit activities.
        Clin. Biomech. 2019; 63: 95-103https://doi.org/10.1016/j.clinbiomech.2019.02.021
        • Sims K.
        The development of hip osteoarthritis: implications for conservative management.
        Man. Ther. 1999; 4: 127-135https://doi.org/10.1054/math.1999.0191
        • Sjödahl C.
        • Jarnlo G.B.
        • Söderberg B.
        • Persson B.M.
        Pelvic motion in trans-femoral amputees in the frontal and transverse plane before and after special gait re-education.
        Prosthetics Orthot. Int. 2003; 27: 227-237https://doi.org/10.1080/03093640308726686
        • Smith J.D.
        • Ferris A.E.
        • Heise G.D.
        • Hinrichs R.N.
        • Martin P.E.
        Oscillation and reaction board techniques for estimating inertial properties of a below-knee prosthesis.
        J. Vis. Exp. 2014; : 1-16https://doi.org/10.3791/50977
        • Son J.
        • Hwang S.
        • Kim Y.
        A hybrid static optimisation method to estimate muscle forces during muscle co-activation.
        Comput. Methods Biomech. Biomed. Eng. 2012; 15: 249-254https://doi.org/10.1080/10255842.2010.522187
        • Song K.
        • Gaffney B.M.M.
        • Shelburne K.B.
        • Pascual-Garrido C.
        • Clohisy J.C.
        • Harris M.D.
        Dysplastic hip anatomy alters muscle moment arm lengths, lines of action, and contributions to joint reaction forces during gait.
        J. Biomech. 2020; 110109968https://doi.org/10.1016/j.jbiomech.2020.109968
        • Struyf P.
        • van Heugten C.M.
        • Hitters M.W.
        • Smeets R.J.
        The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees.
        Arch. Phys. Med. Rehabil. 2009; 90: 440-446
        • Tranberg R.
        • Zügner R.
        • Kärrholm J.
        Improvements in hip- and pelvic motion for patients with osseointegrated trans-femoral prostheses.
        Gait Posture. 2011; 33: 165-168https://doi.org/10.1016/j.gaitpost.2010.11.004
        • Tura A.
        • Raggi M.
        • Rocchi L.
        • Cutti A.G.
        • Chiari L.
        Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations.
        J. Neuroeng. Rehabil. 2010; 7: 1-10https://doi.org/10.1186/1743-0003-7-4
        • Valente G.
        • Taddei F.
        • Jonkers I.
        Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis.
        J. Biomech. 2013; 46: 2186-2193https://doi.org/10.1016/j.jbiomech.2013.06.030
        • Vertriest S.
        • Coorevits P.
        • Hagberg K.
        • Brånemark R.
        • Häggström E.E.
        • Vanderstraeten G.
        • Frossard L.A.
        Static load bearing exercises of individuals with transfemoral amputation fitted with an osseointegrated implant: loading compliance.
        Prosthetics Orthot. Int. 2017; 41: 393-401https://doi.org/10.1177/0309364616640949
        • Wesseling M.
        • De Groote F.
        • Bosmans L.
        • Bartels W.
        • Meyer C.
        • Desloovere K.
        • Jonkers I.
        Subject-specific geometrical detail rather than cost function formulation affects hip loading calculation*.
        Comput. Methods Biomech. Biomed. Eng. 2016; 19: 1475-1488https://doi.org/10.1080/10255842.2016.1154547
        • Whitney S.L.
        • Wrisley D.M.
        • Marchetti G.F.
        • Gee M.A.
        • Redfern M.S.
        • Furman J.M.
        Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the five-times-sit-to-stand test.
        Phys. Ther. 2005; 85: 1034-1045https://doi.org/10.1093/ptj/85.10.1034
        • Winter D.A.
        Biomechanics and Motor Control of Human Movement.
        2004
        • Ziegler-Graham K.
        • MacKenzie E.J.
        • Ephraim P.L.
        • Travison T.G.
        • Brookmeyer R.
        Estimating the prevalence of limb loss in the United States: 2005 to 2050.
        Arch. Phys. Med. Rehabil. 2008; 89: 422-429https://doi.org/10.1016/j.apmr.2007.11.005