Advertisement

The addition of cerclage wiring does not improve proximal bicortical fixation of locking plates for Type C periprosthetic fractures in synthetic humeri

      Highlights

      • It is difficult to create robust reconstructions for periprosthetic humeral fractures.
      • Cerclage wiring, screw fixation, and a hybrid method were biomechanically tested.
      • Isolated bicortical screw fixation provided resistance against bending, shear, and torsional motion.
      • Addition of cerclage wiring to bicortical screw fixation offered no biomechanical advantage.

      Abstract

      Background

      Treatment of proximal humerus periprosthetic fractures is challenging. It remains difficult to achieve robust fixation of the proximal fragment to the locking plate using cerclage wiring and/or unicortical screws. Use of polyaxial tangentially directed bicortical locking screws increases screw purchase, but it is unclear if this option provides robust fixation. This biomechanical study compares fixation of constructs using cerclage wires, bicortical locking screws, and a hybrid method utilizing both methods.

      Methods

      Uncemented humeral stems were implanted into synthetic humeri and Type C periprosthetic fractures were simulated with a 1 cm transverse osteotomy. Distal ends of locking plates were secured with bicortical non-locking screws. The proximal ends were supported by either isolated cerclage wires, polyaxial locking screws, or a hybrid combination of both (n = 6 for each group). A universal test frame was used for non-destructive torsion and cyclic axial compression tests. 3-D motion tracking was employed to determine stiffnesses and relative interfragmentary motions.

      Findings

      Isolated screw constructs showed significantly increased resistance against torsional movement, bending, and shear, (p < 0.05) in comparison to cerclage constructs. The hybrid construct provided no significant changes in stability over the isolated screw construct.

      Interpretation

      Addition of cerclage wires in this synthetic bone model of Type C periprosthetic humerus fractures did not add significant stability to proximal bicortical locking plate fixation. Considering risks of tissue stripping and nerve injury, usage of cerclage wires in a similar clinical setting should be chosen carefully, especially when bicortical fixation around the prosthetic stem can be achieved.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abdel-Aziz Y.I.
        • Karara H.
        Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry.
        (Published online)1971https://doi.org/10.14358/PERS.81.2.103
        • Admin
        FiberTape Cerclage - An Alternative Way to Fix Circular Fractures.
        (Published June 13. Accessed May 17, 2022)
        • Angelini A.
        • Battiato C.
        Past and present of the use of cerclage wires in orthopedics.
        Eur. J. Orthop. Surg. Traumatol. 2015; 25: 623-635https://doi.org/10.1007/s00590-014-1520-2
        • Augat P.
        • Burger J.
        • Schorlemmer S.
        • Henke T.
        • Peraus M.
        • Claes L.
        Shear movement at the fracture site delays healing in a diaphyseal fracture model.
        J. Orthop. Res. 2003; 21: 1011-1017https://doi.org/10.1016/S0736-0266(03)00098-6
        • Bergmann G.
        • Graichen F.
        • Bender A.
        • et al.
        In vivo Gleno-humeral joint loads during forward flexion and abduction.
        J. Biomech. 2011; 44: 1543-1552https://doi.org/10.1016/j.jbiomech.2011.02.142
        • Bizzarro J.
        • Regazzoni P.
        Principles of Fracture Fixation.
        2022: 12
        • Braman J.P.
        • Harrison A.K.
        Surgical outcomes of internal fixation and revision arthroplasty for periprosthetic humeral fractures: Commentary on an article by Jaron R. Andersen, MD, et al.: “Surgically Treated Humeral Shaft Fractures Following Shoulder Arthroplasty”.
        JBJS. 2013; 95: e6https://doi.org/10.2106/JBJS.L.01321
        • Chin P.Y.K.
        • Sperling J.W.
        • Cofield R.H.
        • Schleck C.
        Complications of total shoulder arthroplasty: are they fewer or different?.
        J. Shoulder Elb. Surg. 2006; 15: 19-22https://doi.org/10.1016/j.jse.2005.05.005
        • Clavert P.
        • Adam P.
        • Bevort A.
        • Bonnomet F.
        • Kempf J.F.
        Pitfalls and complications with locking plate for proximal humerus fracture.
        J. Shoulder Elb. Surg. 2010; 19: 489-494https://doi.org/10.1016/j.jse.2009.09.005
        • Day J.S.
        • Lau E.
        • Ong K.L.
        • Williams G.R.
        • Ramsey M.L.
        • Kurtz S.M.
        Prevalence and projections of total shoulder and elbow arthroplasty in the United States to 2015.
        J. Shoulder Elb. Surg. 2010; 19: 1115-1120https://doi.org/10.1016/j.jse.2010.02.009
        • Dennis M.G.
        • Simon J.A.
        • Kummer F.J.
        • Koval K.J.
        • DiCesare P.E.
        Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: a biomechanical study of 5 techniques.
        J. Arthroplast. 2000; 15: 523-528https://doi.org/10.1054/arth.2000.4339
        • Edelson G.
        Variations in the retroversion of the humeral head.
        J. Shoulder Elb. Surg. 1999; 8: 142-145https://doi.org/10.1016/S1058-2746(99)90007-1
        • Egger E.L.
        • Gottsauner-Wolf F.
        • Palmer J.
        • Aro H.T.
        • Chao E.Y.
        Effects of axial dynamization on bone healing.
        J. Trauma. 1993; 34: 185-192https://doi.org/10.1097/00005373-199302000-00001
        • Förch S.
        • Sandriesser S.
        • Mayr E.
        • Schrödl F.
        • von Rüden C.
        • Augat P.
        Biomechanical comparison of different cerclage types in addition to an angle stable plate osteosynthesis of distal tibial fractures.
        Injury. 2021; 52: 2126-2130https://doi.org/10.1016/j.injury.2021.03.040
        • Fram B.
        • Elder A.
        • Namdari S.
        Periprosthetic humeral fractures in shoulder arthroplasty.
        JBJS Rev. 2019; 7e6https://doi.org/10.2106/JBJS.RVW.19.00017
        • Gebrelul A.
        • Green A.
        • Schacherer T.
        • Khazzam M.
        Periprosthetic humerus fractures: classification, management, and review of the literature.
        Ann. Joint. 2018; 3 (Accessed December 1, 2021)
        • Global D.J.O.
        Turon Modular Shoulder System Surgical Technique.
        (Published online)2011
        • Goodman S.B.
        The effects of micromotion and particulate materials on tissue differentiation. Bone chamber studies in rabbits.
        Acta Orthop. Scand. Suppl. 1994; 258: 1-43https://doi.org/10.3109/17453679409155227
        • Goodship A.E.
        • Kenwright J.
        The influence of induced micromovement upon the healing of experimental tibial fractures.
        J. Bone Joint Surg. (Br.). 1985; 67: 650-655https://doi.org/10.1302/0301-620X.67B4.4030869
        • Goodship A.E.
        • Cunningham J.L.
        • Kenwright J.
        Strain rate and timing of stimulation in mechanical modulation of fracture healing.
        Clin. Orthop. Relat. Res. 1998; : S105-S115https://doi.org/10.1097/00003086-199810001-00012
        • Haddad F.S.
        • Dehaan M.N.
        • Brady O.
        • et al.
        A biomechanical evaluation of cortical onlay allograft struts in the treatment of periprosthetic femoral fractures.
        HIP Int. 2003; 13: 148-158https://doi.org/10.1177/112070000301300305
        • Harb A.
        • Welke B.
        • Liodakis E.
        • et al.
        Biomechanical assessment of three Osteosynthesis constructs by Periprosthetic humerus fractures.
        Adv. Orthop. 2020; 2020e8872419https://doi.org/10.1155/2020/8872419
        • Hast M.W.
        • Chin M.
        • Schmidt E.C.
        • Kuntz A.F.
        Central screw use delays implant dislodgement in osteopenic bone but not synthetic surrogates: a comparison of reverse total shoulder models.
        J. Biomech. 2019; 93: 11-17https://doi.org/10.1016/j.jbiomech.2019.06.004
        • He Y.
        • He J.
        • Wang F.
        • et al.
        Application of additional medial plate in treatment of proximal humeral fractures with unstable medial column: a finite element study and clinical practice.
        Medicine. 2015; 94e1775https://doi.org/10.1097/MD.0000000000001775
        • Hebert-Davies J.
        • Laflamme G.Y.
        • Rouleau D.
        • et al.
        A biomechanical study comparing polyaxial locking screw mechanisms.
        Injury. 2013; 44: 1358-1362https://doi.org/10.1016/j.injury.2013.06.013
        • Jabran A.
        • Peach C.
        • Ren L.
        Biomechanical analysis of plate systems for proximal humerus fractures: a systematic literature review.
        Biomed. Eng. Online. 2018; 17: 47https://doi.org/10.1186/s12938-018-0479-3
        • Jackson B.E.
        • Evangelista D.J.
        • Ray D.D.
        • Hedrick T.L.
        3D for the people: multi-camera motion capture in the field with consumer-grade cameras and open source software.
        Biol. Open. 2016; 5: 1334-1342https://doi.org/10.1242/bio.018713
        • Kirchhoff C.
        • Kirchhoff S.
        • Biberthaler P.
        Klassifikation periprothetischer Schulterfrakturen.
        Unfallchirurg. 2016; 119: 264-272https://doi.org/10.1007/s00113-016-0159-3
        • Klingebiel S.
        • Schneider K.N.
        • Gosheger G.
        • et al.
        Periprosthetic stress shielding of the Humerus after reconstruction with modular shoulder megaprostheses in patients with sarcoma.
        J. Clin. Med. 2021; 10: 3424https://doi.org/10.3390/jcm10153424
        • Kohli N.
        • Stoddart J.C.
        • van Arkel R.J.
        The limit of tolerable micromotion for implant osseointegration: a systematic review.
        Sci. Rep. 2021; 11: 10797https://doi.org/10.1038/s41598-021-90142-5
        • Kraemer W.J.
        • Harrington I.J.
        • Hearn T.C.
        Micromotion secondary to axial, torsional, and shear loads in two models of cementless tibial components.
        J. Arthroplast. 1995; 10: 227-235https://doi.org/10.1016/s0883-5403(05)80132-9
        • Kurowicki J.
        • Momoh E.
        • Levy J.C.
        Treatment of Periprosthetic humerus fractures with open reduction and internal fixation.
        J. Orthop. Trauma. 2016; 30e369https://doi.org/10.1097/BOT.0000000000000646
        • Lenz M.
        • Windolf M.
        • Mückley T.
        • et al.
        The locking attachment plate for proximal fixation of periprosthetic femur fractures—a biomechanical comparison of two techniques.
        Int. Orthop. (SICOT). 2012; 36: 1915-1921https://doi.org/10.1007/s00264-012-1574-x
        • Lever J.P.
        • Zdero R.
        • Nousiainen M.T.
        • Waddell J.P.
        • Schemitsch E.H.
        The biomechanical analysis of three plating fixation systems for periprosthetic femoral fracture near the tip of a total hip arthroplasty.
        J. Orthop. Surg. Res. 2010; 5: 45https://doi.org/10.1186/1749-799X-5-45
        • Lewis G.S.
        • Caroom C.T.
        • Wee H.
        • et al.
        Tangential bicortical locked fixation improves stability in vancouver B1 Periprosthetic femur fractures: a biomechanical study.
        J. Orthop. Trauma. 2015; 29: e364-e370https://doi.org/10.1097/BOT.0000000000000365
        • McDonough E.B.
        • Crosby L.A.
        Periprosthetic fractures of the humerus.
        Am. J. Orthop. (Belle Mead NJ). 2005; 34: 586-591
        • Mineo G.V.
        • Accetta R.
        • Franceschini M.
        • Dell’Acqua G.P.
        • Calori G.M.
        • Meersseman A.
        Management of shoulder periprosthetic fractures: our institutional experience and review of the literature.
        Injury. 2013; 44: S82-S85https://doi.org/10.1016/S0020-1383(13)70018-4
        • Namdari S.
        • Mehta S.
        • Tierney A.
        • Hast M.W.
        Locking cap designs improve fatigue properties of polyaxial screws in upper extremity applications.
        J. Orthop. Trauma. 2017; 31: 275-280https://doi.org/10.1097/BOT.0000000000000780
        • Panjabi M.M.
        • Trumble T.
        • Hult J.E.
        • Southwick W.O.
        Effect of femoral stem length on stress raisers associated with revision hip arthroplasty.
        J. Orthop. Res. 1985; 3: 447-455https://doi.org/10.1002/jor.1100030407
        • Pater T.J.
        • Grindel S.I.
        • Schmeling G.J.
        • Wang M.
        Stability of unicortical locked fixation versus bicortical non-locked fixation for forearm fractures.
        Bone Res. 2014; 2: 14014https://doi.org/10.1038/boneres.2014.14
        • Patil S.
        • Sethi M.
        • Vasudeva N.
        Determining angle of humeral torsion using image software technique.
        J. Clin. Diagn. Res. 2016; 10: AC06-AC09https://doi.org/10.7860/JCDR/2016/22121.8672
        • Perren S.M.
        • Fernandez Dell’Oca A.
        • Lenz M.
        • Windolf M.
        Cerclage, evolution and potential of a Cinderella technology. An overview with reference to periprosthetic fractures.
        Acta Chir. Orthop. Traumatol. Cechoslov. 2011; 78: 190-199
        • Peters C.L.
        • Bachus K.N.
        • Davitt J.S.
        Fixation of periprosthetic femur fractures: a biomechanical analysis comparing cortical strut allograft plates and conventional metal plates.
        Orthopedics. 2003; 26: 695-699https://doi.org/10.3928/0147-7447-20030701-13
        • Roach N.T.
        • Lieberman D.E.
        • Gill T.J.
        • Palmer W.E.
        • Gill T.J.
        The effect of humeral torsion on rotational range of motion in the shoulder and throwing performance.
        J. Anat. 2012; 220: 293-301https://doi.org/10.1111/j.1469-7580.2011.01464.x
        • Röderer G.
        • Gebhard F.
        • Krischak G.
        • Wilke H.J.
        • Claes L.
        Biomechanical in vitro assessment of fixed angle plating using a new concept of locking for the treatment of osteoporotic proximal humerus fractures.
        Int. Orthop. 2011; 35: 535-541https://doi.org/10.1007/s00264-010-1021-9
        • Schmotzer H.
        • Tchejeyan G.H.
        • Dall D.M.
        Surgical management of intra- and postoperative fractures of the femur about the tip of the stem in total hip arthroplasty.
        J. Arthroplast. 1996; 11: 709-717https://doi.org/10.1016/S0883-5403(96)80010-6
        • Steinmann S.P.
        • Cheung E.V.
        Treatment of periprosthetic humerus fractures associated with shoulder arthroplasty.
        JAAOS. 2008; 16: 199-207
        • Stevens S.S.
        • Irish A.J.
        • Vachtsevanos J.G.
        • Csongradi J.
        • Beaupré G.S.
        A biomechanical study of three wiring techniques for cerclage-plating.
        J. Orthop. Trauma. 1995; 9: 381-387https://doi.org/10.1097/00005131-199505000-00004
        • Talbot M.
        • Zdero R.
        • Schemitsch E.H.
        Cyclic loading of periprosthetic fracture fixation constructs.
        J. Trauma. 2008; 64: 1308-1312https://doi.org/10.1097/TA.0b013e31811ea244
        • Tilton M.
        • Armstrong A.
        • Sanville J.
        • et al.
        Biomechanical testing of additive manufactured proximal Humerus fracture fixation plates.
        Ann. Biomed. Eng. 2020; 48: 463-476https://doi.org/10.1007/s10439-019-02365-3
        • Voigt C.
        • Hurschler C.
        • Rechi L.
        • Vosshenrich R.
        • Lill H.
        Additive fiber-cerclages in proximal humeral fractures stabilized by locking plates: no effect on fracture stabilization and rotator cuff function in human shoulder specimens.
        Acta Orthop. 2009; 80: 465-471https://doi.org/10.3109/17453670903110659
        • Whiteley R.J.
        • Ginn K.A.
        • Nicholson L.L.
        • Adams R.D.
        Sports participation and humeral torsion.
        J. Orthop. Sports Phys. Ther. 2009; 39: 256-263https://doi.org/10.2519/jospt.2009.2821
        • Williams G.R.
        • Iannotti J.P.
        Management of periprosthetic fractures: the shoulder.
        J. Arthroplast. 2002; 17: 14-16https://doi.org/10.1054/arth.2002.32683
        • Wilson D.
        • Frei H.
        • Masri B.A.
        • Oxland T.R.
        • Duncan C.P.
        A biomechanical study comparing cortical onlay allograft struts and plates in the treatment of periprosthetic femoral fractures.
        Clin. Biomech. (Bristol, Avon). 2005; 20: 70-76https://doi.org/10.1016/j.clinbiomech.2004.08.008
        • Wright T.W.
        • Cofield R.H.
        Humeral fractures after shoulder arthroplasty.
        J. Bone Joint Surg. Am. 1995; 77: 1340-1346https://doi.org/10.2106/00004623-199509000-00008
        • Zdero R.
        • Walker R.
        • Waddell J.P.
        • Schemitsch E.H.
        Biomechanical evaluation of periprosthetic femoral fracture fixation.
        J. Bone Joint Surg. Am. 2008; 90: 1068-1077https://doi.org/10.2106/JBJS.F.01561