Advertisement

Shear wave elastography of the brachioradialis spastic muscle and its correlations with biceps brachialis and clinical scales

      Highlights

      • We measured shear elastic modulus of brachioradialis and biceps of stroke patients.
      • Clinical scales and shear elastic modulus were compared using several tests.
      • Spastic muscles presented larger shear elastic modulus than nonspastic.
      • Shear elastic modulus correlates differently regarding the clinical scale.

      Abstract

      Background

      Shear wave elastography technique estimates biological tissue shear elastic modulus (μ[kPa]), which can be used as an objective, muscle-specific indicator of stiffness increase caused by spasticity. We measured both the brachioradialis and biceps brachialis μ in hemiparetic post-stroke patients (n = 11). The spastic arm was compared with the supposedly non-affected contralateral limb and correlated with Fugl-Meyer Assessment and Modified Ashworth Scales.

      Methods

      Shear elastic modulus was estimated using an Aixplorer V.9 ultrasound device with the elbow at full extension. Average shear elastic modulus t-test, effect sizes, correlation matrix, spider plots and factor analysis were used to check for differences between spastic and nonspastic sides and explore relationships among the variables.

      Findings

      Spastic brachioradialis μ (22.54 ± 11.59 kPa) and biceps brachialis (26.86 ± 12.07 kPa) were significantly greater than the non-spastic counterparts (13.13 ± 2.81 kPa, p = 0.031, ηp2 = 0.3846 for brachioradialis and 15.25 ± 5.00 kPa, p = 0.007, ηp2 = 0.5345 for biceps brachialis). Significant correlations were observed between the spastic brachioradialis and biceps μ and Modified Ashworth Scales, but no correlation with Fugl-Meyer Assessment.

      Interpretation

      Elastography can provide muscle-specific shear elastic modulus estimations of spastic brachioradialis and biceps brachialis, which are distinct from the nonspastic side. In some patients, there was no clear correspondence of the Fugl-Meyer Assessment functional scale with Modified Ashworth Scales and μ, suggesting that spasticity is not the only determinant of arm function. Additionally, shear wave elastography of brachioradialis and biceps brachialis muscles may guide the spasticity treatment, for instance, selecting the preferable candidate for botulinum toxin therapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ansari N.N.
        • Naghdi S.
        • Mashayekhi M.
        • Hasson S.
        • Fakhari Z.
        • Jalaie S.
        Intra-rater reliability of the modified modified Ashworth scale (MMAS) in the assessment of upper-limb muscle spasticity.
        NeuroRehabilitation. 2012; 31 (Jan [cited 2013 Apr 3]): 215-222
        • Aşkın A.
        • Kalaycı Ö.T.
        • Bayram K.B.
        • Tosun A.
        • Demirdal Ü.S.
        • Atar E.
        • İnci M.F.
        Strain sonoelastographic evaluation of biceps muscle intrinsic stiffness after botulinum toxin-A injection.
        Top. Stroke Rehabilit. 2017; 24: 12-17https://doi.org/10.1080/10749357.2016.1183865
        • Bercoff J.
        • Muller M.
        • Tanter M.
        • Fink M.
        Study of viscous and elastic properties of soft tissues using supersonic shear imaging.
        in: IEEE Symposium on Ultrasonics. IEEE, 2003: 925-928
        • Bercoff J.
        • Tanter M.
        • Fink M.
        Supersonic shear imaging: a new technique for soft tissue elasticity mapping.
        IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2004 Apr; 51: 396-409
        • Bohannon R.W.
        • Smith M.B.
        Interrater reliability of a modified Ashworth scale of muscle spasticity.
        Phys. Ther. 1987 Feb; 67: 206-207
        • Burke D.
        • Wissel J.
        • Donnan G.
        Pathophysiology of spasticity in stroke.
        Neurology. 2013 Jan 15; 80: S20-S26
        • Delp S.L.
        • Anderson F.C.
        • Arnold A.S.
        • Loan P.
        • Habib A.
        • John C.T.
        • Thelen D.G.
        OpenSim: open-source software to create and analyze dynamic simulations of movement.
        IEEE Trans. Biomed. Eng. 2007; 54: 1940-1950
        • Dietz V.
        • Sinkjaer T.
        Spastic movement disorder: impaired reflex function and altered muscle mechanics.
        Lancet Neurol. 2007; 6: 725-733https://doi.org/10.1016/S1474-4422(07)70193-X
        • Ding C.W.
        • Song X.
        • Fu X.Y.
        • Zhang Y.C.
        • Mao P.
        • Sheng Y.J.
        • Liu C.F.
        Shear wave elastography characteristics of upper limb muscle in rigidity-dominant Parkinson's disease.
        Neurol. Sci. 2021; 42: 4155-4162
        • Drakonaki E.
        Ultrasound elastography for imaging tendons and muscles.
        J. Ultrason. 2012 Jun; 12: 214-225
        • Eby S.F.
        • Cloud B.A.
        • Brandenburg J.E.
        • Giambini H.
        • Song P.
        • Chen S.
        • An K.N.
        Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood.
        Clin. Biomech. 2015; 30: 22-27
        • Esquenazi A.
        The human and economic burden of poststroke spasticity and muscle overactivity.
        JCOM. 2011; 18: 607-614
        • Fugl-Meyer A.R.
        • Jääskö L.
        • Leyman I.
        • Olsson S.
        • Steglind S.
        The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance.
        Scand. J. Rehabil. Med. 1975; 7 (Jan [cited 2013 Mar 12]): 13-31
        • Gao F.
        • Zhang L.-Q.
        Altered contractile properties of the gastrocnemius muscle poststroke.
        J. Appl. Physiol. 2008 Dec; 105 ([cited 2014 Jul 29]): 1802-1808
        • Gladstone D.J.
        • Danells C.J.
        • Black S.E.
        The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties.
        Neurorehabil. Neural Repair. 2002 Sep; 16: 232-240
        • Hair Joseph F.
        • et al.
        Multivariate Data Analysis: A Global Perspective.
        7th ed. Prentice Hall, Upper Saddle River2009
        • Hentschke H.
        Measures of Effect Size Toolbox.
        GitHub, 2021 (Retrieved August 20, 2021)
        • Kuo C.-L.
        • Hu G.-C.
        Post-stroke spasticity: a review of epidemiology, pathophysiology, and treatments.
        Int. J. Gerontol. 2018 Dec; 12: 280-284
        • Lakens D.
        Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs.
        Front. Psychol. 2013; 4: 863
        • Le Sant G.
        • Nordez A.
        • Hug F.
        • Andrade R.
        • Lecharte T.
        • McNair P.J.
        • et al.
        Effects of stroke injury on the shear modulus of the lower leg muscle during passive dorsiflexion.
        J. Appl. Physiol. 2019 Jan 1; 126: 11-22
        • Lee H.M.
        • Huang Y.Z.
        • Chen J.J.
        • Hwang I.S.
        Quantitative analysis of the velocity related pathophysiology of spasticity and rigidity in the elbow flexors.
        J. Neurol. Neurosurg. Psychiatry. 2002 May; 72: 621-629
        • Lee S.S.M.
        • Spear S.C.
        • Rymer W.Z.
        Quantifying changes in material properties of stroke-impaired muscle.
        Clin. Biomech. 2015 Jan; 30: 269-275
        • Lee S.S.M.
        • Jakubowski K.L.
        • Spear S.C.
        • Rymer W.Z.
        Muscle material properties in passive and active stroke-impaired muscle.
        J. Biomech. 2019 Jan; 83: 197-204
        • Lehoux M.C.
        • Sobczak S.
        • Cloutier F.
        • Charest S.
        • Bertrand-Grenier A.
        Shear wave elastography potential to characterize spastic muscles in stroke survivors: literature review.
        Clin. Biomech. 2020; 72: 84-93
        • Leng Y.
        • Wang Z.
        • Bian R.
        • Lo W.L.A.
        • Xie X.
        • Wang R.
        • et al.
        Alterations of elastic property of spastic muscle with its joint resistance evaluated from shear wave Elastography and biomechanical model.
        Front. Neurol. 2019 Jul 10; : 10
        • Lieber R.L.
        • Ward S.R.
        Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis.
        Am. J. Phys. Cell Phys. 2013 Aug 1; 305: C241-C252
        • Lieber R.L.
        • Runesson E.
        • Einarsson F.
        • Fridén J.
        Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material.
        Muscle Nerve. 2003 Oct; 28: 464-471
        • Lieber R.L.
        • Roberts T.J.
        • Blemker S.S.
        • Lee S.S.M.
        • Herzog W.
        Skeletal muscle mechanics, energetics and plasticity.
        J. Neuroeng. Rehabil. 2017 Dec 23; 14: 108
        • Malaiya R.
        • McNee A.E.
        • Fry N.R.
        • Eve L.C.
        • Gough M.
        • Shortland A.P.
        The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy.
        J. Electromyogr. Kinesiol. 2007 Dec; 17: 657-663
        • Mathevon L.
        • Michel F.
        • Aubry S.
        • Testa R.
        • Lapole T.
        • Arnaudeau L.F.
        • Fernandez V.
        • Parratte B.
        • Calmels P.
        Two-dimensional and shear wave elastography ultrasound: a reliable method to analyse spastic muscles?.
        Muscle Nerve. 2018; 57: 222-228
        • Radunovic G.
        • Vlad V.
        • Micu M.C.
        • Nestorova R.
        • Petranova T.
        • Porta F.
        • et al.
        Ultrasound assessment of the elbow.
        Med Ultrason. 2012 Jun; 14: 141-146
        • Rasool G.
        • Wang A.B.
        • Rymer W.Z.
        • Lee S.S.M.
        Shear waves reveal viscoelastic changes in skeletal muscles after hemispheric stroke.
        IEEE Trans. Neural. Syst. Rehabil. Eng. 2018 Oct; 26: 2006-2014
        • Singh P.
        • Joshua A.
        • Ganeshan S.
        • Suresh S.
        Intra-rater reliability of the modified Tardieu scale to quantify spasticity in elbow flexors and ankle plantar flexors in adult stroke subjects.
        Ann. Indian Acad. Neurol. 2011; 14: 23
        • Sinkjær T.
        • Magnussen I.
        Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients.
        Brain. 1994; 117: 355-363
        • Urban P.P.
        • Wolf T.
        • Uebele M.
        • Marx J.J.
        • Vogt T.
        • Stoeter P.
        • et al.
        Occurrence and clinical predictors of spasticity after ischemic stroke.
        Stroke. 2010 Sep; 41: 2016-2020
        • Vivancos-Matellano F.
        • Pascual-Pascual S.I.
        • Nardi-Vilardaga J.
        • Miquel-Rodriguez F.
        • de Miguel-Leon I.
        • Martinez-Garre M.C.
        • et al.
        Guide to the comprehensive treatment of spasticity.
        Rev. Neurol. 2021; 45 ([cited 2014 Aug 15]): 365-375
        • Zúñiga L.D.O.
        • López C.A.G.
        • González E.R.
        (2021). Ultrasound Elastography in the assessment of the stiffness of spastic muscles: a systematic review.
        Ultrasound Med. Biol. 2021; 47: 1448-1464