Advertisement

Motion sickness decreases low back function and changes gene expression in military aircrew

      Highlights

      • Motion sickness and low back disorders may be linked along a viable causal pathway.
      • Results provide preliminary evidence linking motion sickness and low back pain.
      • Motion sickness altered standing balance, low back function, and gene expression.

      Abstract

      Background

      Motion sickness and low back disorders are prevalent and debilitating conditions that affect the health, performance, and operational effectiveness of military aircrews. This study explored the effects of a motion sickness stimulus on biomechanical and genetic factors that could potentially be involved in the causal pathways for both disorders.

      Methods

      Subjects recruited from a military population were exposed to either a mild (n = 12) or aggressive (n = 16) motion sickness stimulus in a Neuro-Otologic Test Center. The independent variable of interest was the motion sickness stimulus exposure (before vs. after), though differences between mild and aggressive stimuli were also assessed. Dependent measures for the study included motion sickness exposure duration, biomechanical variables (postural stability, gait function, low back function, lumbar spine loading), and gene expression.

      Findings

      Seven of twelve subjects experiencing the mild motion sickness stimulus endured the full 30 min in the NOTC, whereas subjects lasted an average of 13.2 (SD 5.0) minutes in the NOTC with the aggressive motion sickness stimulus. Mild motion sickness exposure led to a significant decrease in the postural stability measure of sway area, though the aggressive motion sickness exposure led to a statistically significant increase in sway area. Both stimuli led to decreases in low back function, though the decrease was only statistically significant for the mild protocol. Both stimuli also led to significant changes in gene expression.

      Interpretation

      Motion sickness may alter standing balance, decrease low back function, and lead to changes in the expression of genes with roles in osteogenesis, myogenesis, development of brain lymphatics, inflammation, neuropathic pain, and more. These results may provide preliminary evidence for a link between motion sickness and low back disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bader C.E.
        • Giordano N.A.
        • McDonald C.C.
        • Meghani S.H.
        • Polomano R.C.
        Musculoskeletal pain and headache in the active duty military population: an integrative review.
        Worldviews Evid.-Based Nurs. 2018; 15: 264-271
        • Basta D.
        • Todt I.
        • Scherer H.
        • Clarke A.
        • Ernst A.
        Postural control in otolith disorders.
        Hum. Mov. Sci. 2005; 24: 268-279
        • Bhattacharya A.
        • Watts N.B.
        • Dwivedi A.
        • Shukla R.
        • Mani A.
        • Diab D.
        Combined measures of dynamic bone quality and postural balance--a fracture risk assessment approach in osteoporosis.
        J. Clin. Densitom. 2016; 19: 154-164
        • Carpenter M.
        • Allum J.
        • Honegger F.
        Vestibular influences on human postural control in combinations of pitch and roll planes reveal differences in spatiotemporal processing.
        Exp. Brain Res. 2001; 140: 95-111
        • Catanzariti J.-F.
        • Guyot M.-A.
        • Massot C.
        • Khenioui H.
        • Agnani O.
        • Donzé C.
        Evaluation of motion sickness susceptibility by motion sickness susceptibility questionnaire in adolescents with idiopathic scoliosis: a case–control study.
        Eur. Spine J. 2016; 25: 438-443
        • Chang C.H.
        • Chen F.C.
        • Kung W.C.
        • Stoffregen T.A.
        Effects of physical driving experience on body movement and motion sickness during virtual driving.
        Aerosp. Med. Hum. Perform. 2017; 88: 985-992
        • Chiou S.
        • Bhattacharya A.
        • Lai C.-F.
        • Succop P.A.
        Effects of environmental and task risk factors on workers’ perceived sense of postural sway and instability.
        Occup. Ergon. 1998; 1: 81-93
        • Cohen S.P.
        • Nguyen C.
        • Kapoor S.G.
        • Anderson-Barnes V.C.
        • Foster L.
        • Shields C.
        • McLean B.
        • Wichman T.
        • Plunkett A.
        Back pain during war: an analysis of factors affecting outcome.
        Arch. Intern. Med. 2009; 169: 1916-1923
        • Curry C.
        • Peterson N.
        • Li R.
        • Stoffregen T.
        • Null N.E.
        Postural activity during use of a head-mounted display: sex differences in the “driver–passenger” effect.
        J. Name Front. Virt. Real. J. 2020; 1 (Medium: X)
        • Dai M.
        • Sofroniou S.
        • Kunin M.
        • Raphan T.
        • Cohen B.
        Motion sickness induced by off-vertical axis rotation (OVAR).
        Exp. Brain Res. 2010; 204: 207-222
        • Dobie T.G.
        Motion Sickness: A Motion Adaptation Syndrome.
        Springer, 2019
        • Dong X.
        • Yoshida K.
        • Stoffregen T.A.
        Control of a virtual vehicle influences postural activity and motion sickness.
        J. Exp. Psychol. Appl. 2011; 17: 128-138
        • Dufour J.S.
        • Marras W.S.
        • Knapik G.G.
        An EMG-assisted model calibration technique that does not require MVCs.
        J. Electromyogr. Kinesiol. 2013; 23: 608-613
        • Ferguson S.A.
        • Gallagher S.
        • Marras W.S.
        Validity and reliability of sincerity test for dynamic trunk motions.
        Disabil. Rehabil. 2003; 25: 236-241
        • Ferguson S.A.
        • Marras W.S.
        • Burr D.L.
        • Woods S.
        • Mendel E.
        • Gupta P.
        Quantification of a meaningful change in low back functional impairment.
        Spine (Phila Pa 1976). 2009; 34: 2060-2065
        • Granata K.P.
        • Marras W.S.
        The influence of trunk muscle coactivity on dynamic spinal loads.
        Spine (Phila Pa 1976). 1995; 20: 913-919
        • Harrison M.F.
        • Coffey B.
        • Albert W.J.
        • Fischer S.L.
        Night vision goggle-induced neck pain in military helicopter aircrew: a literature review.
        Aerospace Med. Hum. Perform. 2015; 86: 46-55
        • Hartvigsen J.
        • Hancock M.J.
        • Kongsted A.
        • Louw Q.
        • Ferreira M.L.
        • Genevay S.
        • Hoy D.
        • Karppinen J.
        • Pransky G.
        • Sieper J.
        • Smeets R.J.
        • Underwood M.
        • Buchbinder R.
        • Hartvigsen J.
        • Cherkin D.
        • Foster N.E.
        • Maher C.G.
        • Underwood M.
        • van Tulder M.
        • Anema J.R.
        • Chou R.
        • Cohen S.P.
        • Menezes Costa L.
        • Croft P.
        • Ferreira M.
        • Ferreira P.H.
        • Fritz J.M.
        • Genevay S.
        • Gross D.P.
        • Hancock M.J.
        • Hoy D.
        • Karppinen J.
        • Koes B.W.
        • Kongsted A.
        • Louw Q.
        • Öberg B.
        • Peul W.C.
        • Pransky G.
        • Schoene M.
        • Sieper J.
        • Smeets R.J.
        • Turner J.A.
        • Woolf A.
        What low back pain is and why we need to pay attention.
        Lancet. 2018; 391: 2356-2367
        • Horak F.B.
        Assumptions underlying motor control for neurologic rehabilitation, contemporary management of motor control problems.
        in: Proceedings of the II STEP Conference. Foundation for Physical Therapy Alexandria, VA1991: 11-28
        • Hromatka B.S.
        • Tung J.Y.
        • Kiefer A.K.
        • Do C.B.
        • Hinds D.A.
        • Eriksson N.
        Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis.
        Hum. Mol. Genet. 2015; 24: 2700-2708
        • Hutchins Jr., C.W.
        • Kennedy R.S.
        Clinical problems in aviation medicine. Relationship between past history of motion sickness and attrition from flight training.
        Aerospace Med. 1965; 36: 984-987
        • Hwang J.
        • Knapik G.G.
        • Dufour J.S.
        • Aurand A.
        • Best T.M.
        • Khan S.N.
        • Mendel E.
        • Marras W.S.
        A biologically-assisted curved muscle model of the lumbar spine: model structure.
        Clin. Biomech. (Brist. Avon). 2016; 37: 53-59
        • Hwang J.
        • Knapik G.G.
        • Dufour J.S.
        • Best T.M.
        • Khan S.N.
        • Mendel E.
        • Marras W.S.
        A biologically-assisted curved muscle model of the lumbar spine: model validation.
        Clin. Biomech. (Brist. Avon). 2016; 37: 153-159
        • Kim J.
        • Eom G.M.
        • Kim C.
        • Kim D.-H.
        • Lee J.-H.
        • Park B.
        • Hong J.
        Sex differences in the postural sway characteristics of young and elderly subjects during quiet natural standing.
        Geriatr Gerontol Int. 2010; 10: 191-198
        • Kim S.H.
        • Lee S.Y.
        • Kim J.S.
        • Koo J.W.
        Parameters of off-vertical Axis rotation in unilateral and bilateral Vestibulopathy and their correlation with vestibular evoked myogenic potentials.
        J. Clin. Med. 2021; 10
        • Koslucher F.
        • Haaland E.
        • Malsch A.
        • Webeler J.
        • Stoffregen T.A.
        Sex differences in the incidence of motion sickness induced by linear visual oscillation.
        Aerosp. Med. Hum. Perform. 2015; 86: 787-793
        • Koslucher F.
        • Haaland E.
        • Stoffregen T.A.
        Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness.
        Exp. Brain Res. 2016; 234: 313-322
        • Lawson B.D.
        • McGee H.A.
        • Castenda M.A.
        • Golding J.F.
        • Kass S.J.
        • McGrath C.M.
        Evaluation of Several Common Antimotion Sickness Medications and Recommendations Concerning their Potential Usefulness during Special Operations.
        Naval Aerospace Medical Research Lab, Pensacola, FL2009
        • Marras W.S.
        The complex spine: the multidimensional system of causal pathways for low-back disorders.
        Hum. Factors. 2012; 54: 881-889
        • Marras W.S.
        • Wongsam P.E.
        Flexibility and velocity of the normal and impaired lumbar spine.
        Arch. Phys. Med. Rehabil. 1986; 67: 213-217
        • Marras W.S.
        • Parnianpour M.
        • Kim J.
        A normal database of dynamic trunk motion characteristics during repetitive trunk flexion and extension as a function of task asymmetry, age and gender.
        IEEE Trans. Rehab. Eng. 1994; 2: 137-146
        • Marras W.S.
        • Parnianpour M.
        • Ferguson S.A.
        • Kim J.Y.
        • Crowell R.R.
        • Bose S.
        • Simon S.R.
        The classification of anatomic- and symptom-based low back disorders using motion measure models.
        Spine (Phila Pa 1976). 1995; 20: 2531-2546
        • Marras W.S.
        • Ferguson S.A.
        • Gupta P.
        • Bose S.
        • Parnianpour M.
        • Kim J.Y.
        • Crowell R.R.
        The quantification of low back disorder using motion measures.
        Methodol. Validat. Spine (Phila Pa 1976). 1999; 24: 2091-2100
        • Marras W.S.
        • Lewis K.E.
        • Ferguson S.A.
        • Parnianpour M.
        Impairment magnification during dynamic trunk motions.
        Spine (Phila Pa 1976). 2000; 25: 587-595
        • Marras W.S.
        • Davis K.G.
        • Ferguson S.A.
        • Lucas B.R.
        • Gupta P.
        Spine loading characteristics of patients with low back pain compared with asymptomatic individuals.
        Spine (Phila Pa 1976). 2001; 26: 2566-2574
        • Marras W.S.
        • Ferguson S.A.
        • Burr D.
        • Davis K.G.
        • Gupta P.
        Functional impairment as a predictor of spine loading.
        Spine (Phila Pa 1976). 2005; 30: 729-737
        • Merhi O.
        • Faugloire E.
        • Flanagan M.
        • Stoffregen T.
        Motion sickness, console video games, and head-mounted displays.
        Hum. Factors. 2007; 49: 920-934
        • Mihara M.
        • Miyai I.
        • Hatakenaka M.
        • Kubota K.
        • Sakoda S.
        Role of the prefrontal cortex in human balance control.
        NeuroImage. 2008; 43: 329-336
        • Mirka G.A.
        • Marras W.S.
        A stochastic model of trunk muscle coactivation during trunk bending.
        Spine (Phila Pa 1976). 1993; 18: 1396-1409
        • Montero-Odasso M.
        • Muir S.W.
        • Speechley M.
        Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls.
        Arch. Phys. Med. Rehabil. 2012; 93: 293-299
        • Munafo J.
        • Diedrick M.
        • Stoffregen T.A.
        The virtual reality head-mounted display oculus rift induces motion sickness and is sexist in its effects.
        Exp. Brain Res. 2017; 235: 889-901
        • Nishiike S.
        • Okazaki S.
        • Watanabe H.
        • Akizuki H.
        • Imai T.
        • Uno A.
        • Kitahara T.
        • Horii A.
        • Takeda N.
        • Inohara H.
        The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans.
        J. Med. Investig. 2013; 60: 236-239
        • NRC
        Musculoskeletal Disorders and the Workplace: Low Back and Upper Extremities, Washington, DC.
        2001
        • Orsello C.A.
        • Phillips A.S.
        • Rice G.M.
        Height and in-flight low Back pain association among military helicopter pilots.
        Aviat. Space Environ. Med. 2013; 84: 32-37
        • Pala E.
        • Denkçeken T.
        Evaluation of miRNA expression profiles in schizophrenia using principal-component analysis-based unsupervised feature extraction method.
        J. Comput. Biol. 2020; 27: 1253-1263
        • Reason J.T.
        • Brand J.J.
        Motion Sickness.
        Academic Press, Oxford, England1975
        • Revilla F.
        • Larsh T.
        • Mani A.
        • Duker A.
        • Cox C.
        • Succop P.
        • Gartner M.
        • Jarrin Tejada C.
        • Bhattacharya A.
        Effect of dopaminergic medication on postural sway in advanced Parkinson’s Disease.
        Front. Neurol. 2013; : 4
        • Riccio G.
        • Stoffregen T.
        An ecological theory of motion sickness and postural instability.
        Ecol. Psychol. 1991; 3: 195-240
        • Simmons R.
        • Phillips J.
        • Lojewski R.
        • Lawson B.
        A Comparison of Intranasal and Oral Scopolamine for Motion Sickness Prevention in Military Personnel.
        Naval Aerospace Medical Research Lab, Pensacola, FL2008
        • Stoffregen T.A.
        • Hettinger L.J.
        • Haas M.W.
        • Roe M.M.
        • Smart L.J.
        Postural instability and motion sickness in a fixed-based flight simulator.
        Hum. Factors. 2000; 42: 458-469
        • Stoffregen T.A.
        • Faugloire E.
        • Yoshida K.
        • Flanagan M.B.
        • Merhi O.
        Motion sickness and postural sway in console video games.
        Hum. Factors. 2008; 50: 322-331
        • Stoffregen T.A.
        • Chen F.-C.
        • Varlet M.
        • Alcantara C.
        • Bardy B.G.
        Getting your sea legs.
        PLoS One. 2013; 8e66949
        • Stoffregen T.A.
        • Chen Y.C.
        • Koslucher F.C.
        Motion control, motion sickness, and the postural dynamics of mobile devices.
        Exp. Brain Res. 2014; 232: 1389-1397
        • Stoffregen T.A.
        • Chang C.-H.
        • Chen F.-C.
        • Zeng W.-J.
        Effects of decades of physical driving on body movement and motion sickness during virtual driving.
        PLoS One. 2017; 12e0187120
        • Warwick-Evans L.A.
        • Symons N.
        • Fitch T.
        • Burrows L.
        Evaluating sensory conflict and postural instability. Theories of motion sickness.
        Brain Res. Bull. 1998; 47: 465-469
        • Weech S.
        • Varghese J.P.
        • Barnett-Cowan M.
        Estimating the sensorimotor components of cybersickness.
        J. Neurophysiol. 2018; 120: 2201-2217
        • Wertheim A.H.
        Working in a moving environment.
        Ergonomics. 1998; 41: 1845-1858
        • Yasuda T.
        • Nakagawa T.
        • Inoue H.
        • Iwamoto M.
        • Inokuchi A.
        The role of the labyrinth, proprioception and plantar mechanosensors in the maintenance of an upright posture.
        Eur. Arch. Otorhinolaryngol. 1999; 256: S27-S32
        • Zampieri C.
        • Salarian A.
        • Carlson-Kuhta P.
        • Aminian K.
        • Nutt J.G.
        • Horak F.B.
        The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease.
        J. Neurol. Neurosurg. Psychiatry. 2010; 81: 171
        • Zampieri C.
        • Salarian A.
        • Carlson-Kuhta P.
        • Nutt J.G.
        • Horak F.B.
        Assessing mobility at home in people with early Parkinson’s disease using an instrumented timed up and go test.
        Parkinsonism Relat. Disord. 2011; 17: 277-280