Advertisement

Biomechanical in vitro analysis of a novel flexible implant for pubic symphysis disruption using an ultra-high molecular weight polyethylene fiber cord

      Highlights

      • Plate osteosynthesis of pubic symphysis disruption shows high failure rates.
      • Ultra-high molecular weight polyethylene cords have favorable mechanical properties.
      • A flexible implant was developed by connecting two plates with these cords.
      • Eye splices are an optimal fixation of the cords within the plates.
      • Failure load of the implant was higher than physiological forces at pubic symphysis.

      Abstract

      Background

      Plate osteosynthesis depicts the gold standard to surgically treat pubic symphysis disruptions. However, high rates of implant failure after plate osteosynthesis are reported, probably because of the iatrogenic arthrodesis of this fibrocartilaginous joint. Therefore, flexible implants for treatment of pubic symphysis disruptions appear to be a sensible solution.

      Methods

      In this biomechanical screening study, we designed and investigated a flexible implant, which consists of two plates connected with an ultra-high molecular weight polyethylene fiber cord. We mechanically tested eye splices as a possible fixation method of the cords by performing tensile load to failure tests. Afterwards, we developed a biomechanically appropriate plate design and cord routing between the plates. Finally, we biomechanically tested the flexible implant under tensile and shear loading until failure.

      Findings

      When fixing a 1 mm ultra-high molecular weight polyethylene fiber cord with eye splices, a load at failure of 1570.74 N was detected under tensile loading. None of the eye splices failed but the cords itself ruptured. The load at failure of the designed cord routing in criss-cross technique and fixation within the plates amounts 4742.09 N under tensile and 2699.77 N under shear load.

      Interpretation

      We developed a novel flexible implant for repair of pubic symphysis disruptions using ultra-high molecular weight polyethylene fiber cords connected to osteosynthesis plates. We identified eye splices as a mechanically optimal fixation method and proved that the ultra-high molecular weight polyethylene fiber cord routing and fixation of the flexible implant clearly withstands physiological forces acting on the pubic symphysis.

      Keywords

      Abbreviations:

      UHMWPE (ultra-high molecular weight polyethylene)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Agarwal Y.
        • Doebele S.
        • Windolf M.
        • Shiozawa T.
        • Gueorguiev B.
        • Stuby F.M.
        Two-leg alternate loading model--a different approach to biomechanical investigations of fixation methods of the injured pelvic ring with focus on the pubic symphysis.
        J. Biomech. 2014; 47: 380-386https://doi.org/10.1016/j.jbiomech.2013.11.008
        • Basir A.
        • Grundeman P.
        • Moll F.
        • van Herwaarden J.
        • Pasterkamp G.
        • Nijland R.
        Adherence of Staphylococcus aureus to Dyneema purity(R) patches and to clinically used cardiovascular prostheses.
        PLoS One. 2016; 11e0162216https://doi.org/10.1371/journal.pone.0162216
        • Becker I.
        • Woodley S.J.
        • Stringer M.D.
        The adult human pubic symphysis: a systematic review.
        J. Anat. 2010; 217: 475-487https://doi.org/10.1111/j.1469-7580.2010.01300.x
        • Bohme J.
        • Lingslebe U.
        • Steinke H.
        • Werner M.
        • Slowik V.
        • Josten C.
        • Hammer N.
        The extent of ligament injury and its influence on pelvic stability following type II anteroposterior compression pelvic injuries--a computer study to gain insight into open book trauma.
        J. Orthop. Res. 2014; 32: 873-879https://doi.org/10.1002/jor.22618
        • Cavalcanti Kussmaul A.
        • Schwaabe F.
        • Kistler M.
        • Gennen C.
        • Andress S.
        • Becker C.A.
        • Bocker W.
        • Greiner A.
        Novel minimally invasive tape suture osteosynthesis for instabilities of the pubic symphysis: a biomechanical study.
        Arch. Orthop. Trauma Surg. 2021; https://doi.org/10.1007/s00402-021-03968-z
        • Coccolini F.
        • Stahel P.F.
        • Montori G.
        • Biffl W.
        • Horer T.M.
        • Catena F.
        • Kluger Y.
        • Moore E.E.
        • Peitzman A.B.
        • Ivatury R.
        • Coimbra R.
        • Fraga G.P.
        • Pereira B.
        • Rizoli S.
        • Kirkpatrick A.
        • Leppaniemi A.
        • Manfredi R.
        • Magnone S.
        • Chiara O.
        • Solaini L.
        • Ceresoli M.
        • Allievi N.
        • Arvieux C.
        • Velmahos G.
        • Balogh Z.
        • Naidoo N.
        • Weber D.
        • Abu-Zidan F.
        • Sartelli M.
        • Ansaloni L.
        Pelvic trauma: WSES classification and guidelines.
        World J. Emerg. Surg. 2017; 12: 5https://doi.org/10.1186/s13017-017-0117-6
        • Collinge C.
        • Archdeacon M.T.
        • Dulaney-Cripe E.
        • Moed B.R.
        Radiographic changes of implant failure after plating for pubic symphysis diastasis: an underappreciated reality?.
        Clin. Orthop. Relat. Res. 2012; 470: 2148-2153https://doi.org/10.1007/s11999-012-2340-5
        • Davis D.D.
        • Foris L.A.
        • Kane S.M.
        • Waseem M.
        Pelvic Fracture.
        StatPearls, Florida, USA2021
        • Deitzel J.
        • McDaniel P.B.
        • Gillespie J.
        High Performance Polyethylene Fibers.
        Structure and Properties of High-Performance Fibers. Woodhead Publishing, Duxford, UK2017
        • Dingenen J.L.V.
        Gel-spun high-performance polyethylene fibres.
        in: Hearle J.W.S. High-Performance Fibres. Woodhead Publishing, Cambridge, UK2001
        • DSM
        Material datasheet Dyneema Purity UG and VG fiber.
        (Last Access: 01/24/2022)
        • Eastman J.G.
        • Krieg J.C.
        • Routt Jr., M.L.
        Early failure of symphysis pubis plating.
        Injury. 2016; 47: 1707-1712https://doi.org/10.1016/j.injury.2016.05.019
        • Fensky F.
        • Weiser L.
        • Sellenschloh K.
        • Vollmer M.
        • Hartel M.J.
        • Morlock M.M.
        • Puschel K.
        • Rueger J.M.
        • Lehmann W.
        Biomechanical analysis of anterior pelvic ring fractures with intact peripelvic soft tissues: a cadaveric study.
        Eur. J. Trauma Emerg. Surg. 2021; 47: 187-193https://doi.org/10.1007/s00068-019-01213-2
        • Gänsslen A.
        • Lindahl J.
        • Grechenig W.
        Symphyseal disruption.
        in: Gänsslen A. Lindahl J. Grechenig S. Füchtmeier B. Pelvic Ring Fractures. Springer, Berlin, Germany2021
        • Garras D.N.
        • Carothers J.T.
        • Olson S.A.
        Single-leg-stance (flamingo) radiographs to assess pelvic instability: how much motion is normal?.
        J. Bone Joint Surg. Am. 2008; 90: 2114-2118https://doi.org/10.2106/JBJS.G.00277
        • Giannoudis P.V.
        • Chalidis B.E.
        • Roberts C.S.
        Internal fixation of traumatic diastasis of pubic symphysis: is plate removal essential?.
        Arch. Orthop. Trauma Surg. 2008; 128: 325-331https://doi.org/10.1007/s00402-007-0429-1
        • Godinsky R.J.
        • Vrabec G.A.
        • Guseila L.M.
        • Filipkowski D.E.
        • Elias J.J.
        Biomechanical comparison of locked versus non-locked symphyseal plating of unstable pelvic ring injuries.
        Eur. J. Trauma Emerg. Surg. 2018; 44: 179-184https://doi.org/10.1007/s00068-016-0661-x
        • Grechenig P.
        • Gänsslen A.
        • Grechenig S.
        • Füchtmeier B.
        Biomechanics of the pelvis.
        in: Gänsslen A. Lindahl J. Grechenig S. Füchtmeier B. Pelvic Ring Fractures. Springer, Berlin, Germany2021
        • Grimshaw C.S.
        • Bledsoe J.G.
        • Moed B.R.
        Locked versus standard unlocked plating of the pubic symphysis: a cadaver biomechanical study.
        J. Orthop. Trauma. 2012; 26: 402-406https://doi.org/10.1097/BOT.0b013e31822c83bd
        • He W.
        • Benson R.
        Polymeric biomaterials.
        in: Ebnesajjad S. Handbook of Biopolymers and Biodegradable Plastics. Elsevier, Oxford, UK2012
        • Hurwit D.
        • Fanton G.
        • Tella M.
        • Behn A.
        • Hunt K.J.
        Viscoelastic properties of common suture material used for rotator cuff repair and arthroscopic procedures.
        Arthroscopy. 2014; 30: 1406-1412https://doi.org/10.1016/j.arthro.2014.05.030
        • Icke C.
        • Koebke J.
        Normal stress pattern of the pubic symphysis.
        Anat. Cell Biol. 2014; 47: 40-43https://doi.org/10.5115/acb.2014.47.1.40
        • Kiskaddon E.M.
        • Wright A.
        • Meeks B.D.
        • Froehle A.W.
        • Gould G.C.
        • Lubitz M.G.
        • Prayson M.J.
        • Horne B.R.
        A biomechanical cadaver comparison of suture button fixation to plate fixation for pubic symphysis diastasis.
        Injury. 2018; 49: 1993-1998https://doi.org/10.1016/j.injury.2018.09.032
        • Matta J.M.
        Indications for anterior fixation of pelvic fractures.
        Clin. Orthop. Relat. Res. 1996; 88-96https://doi.org/10.1097/00003086-199608000-00011
        • Meissner A.
        • Fell M.
        • Wilk R.
        • Boenick U.
        • Rahmanzadeh R.
        Biomechanics of the pubic symphysis. Which forces lead to mobility of the symphysis in physiological conditions?.
        Unfallchirurg. 1996; 99: 415-421
        • Meissner A.
        • Fell M.
        • Wilk R.
        • Boenick U.
        • Rahmanzadeh R.
        Comparison of internal fixation methods for the symphysis in multi-directional dynamic gait simulation.
        Unfallchirurg. 1998; 101: 18-25https://doi.org/10.1007/s001130050227
        • Moed B.R.
        • O'Boynick C.P.
        • Bledsoe J.G.
        Locked versus standard unlocked plating of the symphysis pubis in a Type-C pelvic injury: a cadaver biomechanical study.
        Injury. 2014; 45: 748-751https://doi.org/10.1016/j.injury.2013.11.017
        • Morris S.A.
        • Loveridge J.
        • Smart D.K.
        • Ward A.J.
        • Chesser T.J.
        Is fixation failure after plate fixation of the symphysis pubis clinically important?.
        Clin. Orthop. Relat. Res. 2012; 470: 2154-2160https://doi.org/10.1007/s11999-012-2427-z
        • Oh C.W.
        • Kim P.T.
        • Kim J.W.
        • Min W.K.
        • Kyuung H.S.
        • Kim S.Y.
        • Oh S.H.
        • Ihn J.C.
        Anterior plating and percutaneous iliosacral screwing in an unstable pelvic ring injury.
        J. Orthop. Sci. 2008; 13: 107-115https://doi.org/10.1007/s00776-007-1201-7
        • Olson S.A.
        • Pollak A.N.
        Assessment of pelvic ring stability after injury. Indications for surgical stabilization.
        Clin. Orthop. Relat. Res. 1996; : 15-27https://doi.org/10.1097/00003086-199608000-00004
        • Peijs T.
        High performance polyethylene fibers.
        in: Beaumont P.W.R. Zweben C.H. Comprehensive Composite Materials. Elsevier, Oxford, UK2018
        • Putnis S.E.
        • Pearce R.
        • Wali U.J.
        • Bircher M.D.
        • Rickman M.S.
        Open reduction and internal fixation of a traumatic diastasis of the pubic symphysis: one-year radiological and functional outcomes.
        J. Bone Joint Surg. (Br.). 2011; 93: 78-84https://doi.org/10.1302/0301-620X.93B1.23941
        • Ricci P.L.
        • Maas S.
        • Gerich T.
        • Kelm J.
        Influence of pubic symphysis stiffness on pelvic load distribution during single leg stance.
        Int. J. Numer. Method Biomed. Eng. 2020; 36e3319https://doi.org/10.1002/cnm.3319
        • Sagi H.C.
        • Papp S.
        Comparative radiographic and clinical outcome of two-hole and multi-hole symphyseal plating.
        J. Orthop. Trauma. 2008; 22: 373-378https://doi.org/10.1097/BOT.0b013e31817e49ee
        • Sandvik
        Material Datasheet SNADVIK 316LVM.
        (Last Access: 01/24/2022)
        • Simonian P.T.
        • Routt Jr., M.L.
        Biomechanics of pelvic fixation.
        Orthop. Clin. North Am. 1997; 28: 351-367https://doi.org/10.1016/s0030-5898(05)70294-7
        • Stuby F.M.
        • Doebele S.
        • Agarwal Y.
        • Windolf M.
        • Gueorguiev B.
        • Ochs B.G.
        Influence of flexible fixation for open book injury after pelvic trauma--a biomechanical study.
        Clin. Biomech. 2014; 29: 657-663https://doi.org/10.1016/j.clinbiomech.2014.04.010
        • Tile M.
        Acute pelvic fractures: I. causation and classification.
        J. Am. Acad. Orthop. Surg. 1996; 4: 143-151https://doi.org/10.5435/00124635-199605000-00004
        • Tornetta 3rd, P.
        • Dickson K.
        • Matta J.M.
        Outcome of rotationally unstable pelvic ring injuries treated operatively.
        Clin. Orthop. Relat. Res. 1996; 147-151https://doi.org/10.1097/00003086-199608000-00018
        • Utomo B.D.H.
        • Ernst L.J.
        Detailed modeling of projectile impact on Dyneema composite using dynamic properties.
        J. Solid Mech. Mater. Eng. 2008; 2: 707-717https://doi.org/10.1299/jmmp.2.707
        • Van Loon P.
        • Kuhn S.
        • Hofmann A.
        • Hessmann M.H.
        • Rommens P.M.
        Radiological analysis, operative management and functional outcome of open book pelvic lesions: a 13-year cohort study.
        Injury. 2011; 42: 1012-1019https://doi.org/10.1016/j.injury.2010.11.057
        • Varga E.
        • Hearn T.
        • Powell J.
        • Tile M.
        Effects of method of internal fixation of symphyseal disruptions on stability of the pelvic ring.
        Injury. 1995; 26: 75-80https://doi.org/10.1016/0020-1383(95)92180-i
        • Walheim G.
        • Olerud S.
        • Ribbe T.
        Mobility of the pubic symphysis. Measurements by an electromechanical method.
        Acta Orthop. Scand. 1984; 55: 203-208https://doi.org/10.3109/17453678408992338
        • Walheim G.G.
        • Selvik G.
        Mobility of the pubic symphysis. In vivo measurements with an electromechanic method and a roentgen stereophotogrammetric method.
        Clin. Orthop. Relat. Res. 1984; : 129-135
        • Yao F.
        • He Y.
        • Qian H.
        • Zhou D.
        • Li Q.
        Comparison of biomechanical characteristics and pelvic ring stability using different fixation methods to treat pubic symphysis diastasis: a finite element study.
        Medicine (Baltimore). 2015; 94e2207https://doi.org/10.1097/MD.0000000000002207