Biomechanical properties of common graft choices for anterior cruciate ligament reconstruction: A systematic review


      • We explore intrinsic properties of Anterior Cruciate Ligament graft sources.
      • Most grafts are equal or superior to the native Anterior Cruciate Ligament.
      • All 5 biomechanical properties recorded had similar values between graft types.



      This systematic review explores the differences in the intrinsic biomechanical properties of different graft sources used in anterior cruciate ligament (ACL) reconstruction as tested in a laboratory setting.


      Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, two authors conducted a systematic review exploring the biomechanical properties of ACL graft sources (querying PubMed, Cochrane, and Embase databases). Using the keywords “anterior cruciate ligament graft,” “biomechanics,” and “biomechanical testing,” relevant articles of any level of evidence were identified as eligible and included if they reported on the biomechanical properties of skeletally immature or mature ACL grafts solely and if the grafts were studied in vitro, in isolation, and under similar testing conditions. Studies were excluded if performed on both skeletally immature and mature or non-human grafts, or if the grafts were tested after fixation in a cadaveric knee. For each graft, failure load, stiffness, Young's modulus, maximum stress, and maximum strain were recorded.


      Twenty-six articles were included. Most studies reported equal or increased biomechanical failure load and stiffness of their tested bone-patellar tendon-bone, hamstring, quadriceps, peroneus longus, tibialis anterior and posterior, Achilles, tensor fascia lata, and iliotibial band grafts compared to the native ACL. All recorded biomechanical properties had similar values between graft types.


      Most grafts used for ACL reconstruction are biomechanically superior to the native ACL. Utilizing a proper graft, combined with a standard surgical technique and a rigorous rehabilitation before and after surgery, will improve outcomes of ACL reconstruction.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • AAOS. Management of Anterior Cruciate Ligament Injuries Evidence-Based Clinical Practice Guidelines
        (Sept 5)
        • Almqvist K.F.
        • Jan H.A.
        • Vercruysse C.
        • Verbeeck R.
        • Verdonk R.
        The tibialis tendon as a valuable anterior cruciate ligament allograft substitute: biomechanical properties.
        Knee Surg. Sports Traumatol. Arthrosc. 2007; 15 (Nov 1): 1326-1330
        • Anderson M.J.
        • Browning III, W.M.
        • Urband C.E.
        • Kluczynski M.A.
        • Bisson L.J.
        A systematic summary of systematic reviews on the topic of the anterior cruciate ligament.
        Orthop. J. Sports Med. 2016; 4 (Mar 15. 2325967116634074)
        • Arabiun H.
        Effects of different storage media, temperature, and time on osteoblast preservation in autogenous bone grafts: a histomorphometrical analysis.
        J. Dent. 2020; 21 (Sep): 225
        • Biuk E.
        • Zelić Z.
        • Rapan S.
        • Ćurić G.
        • Biuk D.
        • Radić R.
        Analysis of biomechanical properties of patellar ligament graft and quadruple hamstring tendon graft.
        Injury. 2015; 1 (Nov): S14-S17
        • Blevins F.T.
        • Hecker A.T.
        • Bigler G.T.
        • Boland A.L.
        • Hayes W.C.
        The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts.
        Am. J. Sports Med. 1994; 22 (May): 328-333
        • Boniello M.R.
        • Schwingler P.M.
        • Bonner J.M.
        • Robinson S.P.
        • Cotter A.
        • Bonner K.F.
        Impact of hamstring graft diameter on tendon strength: a biomechanical study.
        Arthroscopy. 2015; 31 (Jun 1): 1084-1090
        • Brand J.
        • Weiler A.
        • Caborn D.N.
        • Brown C.H.
        • Johnson D.L.
        Graft fixation in cruciate ligament reconstruction.
        Am. J. Sports Med. 2000; 28 (Sep): 761-774
        • Cavaignac E.
        • Pailhé R.
        • Reina N.
        • Murgier J.
        • Laffosse J.M.
        • Chiron P.
        • Swider P.
        Can the gracilis replace the anterior cruciate ligament in the knee? A biomechanical study.
        Int. Orthop. 2016; 40 (Aug 1): 1647-1653
        • Chalmers P.N.
        • Mall N.A.
        • Moric M.
        • Sherman S.L.
        • Paletta G.P.
        • Cole B.J.
        • Bach Jr., B.R.
        Does ACL reconstruction alter natural history? A systematic literature review of long-term outcomes.
        J. Bone Joint Surg. 2014; 96 (Feb 19): 292-300
        • Chan D.B.
        • Temple H.T.
        • Latta L.L.
        • Mahure S.
        • Dennis J.
        • Kaplan L.D.
        A biomechanical comparison of fan-folded, single-looped fascia lata with other graft tissues as a suitable substitute for anterior cruciate ligament reconstruction.
        Arthroscopy. 2010; 26 (Dec 1): 1641-1647
        • Claes S.
        • Verdonk P.
        • Forsyth R.
        • Bellemans J.
        The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature.
        Am. J. Sports Med. 2011; 39 (Nov): 2476-2483
        • Cooper D.E.
        • Deng X.H.
        • Burstein A.L.
        • Warren R.F.
        The strength of the central third patellar. Tendon graft: a biomechanical study.
        Am. J. Sports Med. 1993; 21 (Nov): 818-824
        • Delcroix G.J.
        • Kaimrajh D.N.
        • Baria D.
        • Cooper S.
        • Reiner T.
        • Latta L.
        • D’Ippolito G.
        • Schiller P.C.
        • Temple H.T.
        Histologic, biomechanical, and biological evaluation of fan-folded iliotibial band allografts for anterior cruciate ligament reconstruction.
        Arthroscopy. 2013; 29 (Apr 1): 756-765
        • Donahue T.L.
        • Howell S.M.
        • Hull M.L.
        • Gregersen C.
        A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts.
        Arthroscopy. 2002; 18 (Jul 1): 589-597
        • Hamner D.L.
        • Brown C.H.
        • Steiner M.E.
        • Hecker A.T.
        • Hayes W.C.
        Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques.
        J. Bone Joint Surg. 1999; 81 (Apr 1. 549–547)
        • Handl M.
        • Držík M.
        • Cerulli G.
        • Povýšil C.
        • Chlpík J.
        • Varga F.
        • Amler E.
        • Trč T.
        Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft.
        Knee Surg. Sports Traumatol. Arthrosc. 2007; 15 (Mar 1): 233-241
        • Harner C.D.
        • Olson E.
        • Irrgang J.J.
        • Silverstein S.
        • Fu F.H.
        • Silbey M.
        Allograft versus autograft anterior cruciate ligament reconstruction: 3-to 5-year outcome.
        Clin. Orthop. Relat. Res. 1996; 324 (Mar 1): 134-144
        • Harris N.L.
        • Smith D.A.
        • Lamoreaux L.
        • Purnell M.
        Central quadriceps tendon for anterior cruciate ligament reconstruction: part I: morphometric and biomechanical evaluation.
        Am. J. Sports Med. 1997; 25 (Jan): 23-28
        • Herbert A.
        • Brown C.
        • Rooney P.
        • Kearney J.
        • Ingham E.
        • Fisher J.
        Bi-linear mechanical property determination of acellular human patellar tendon grafts for use in anterior cruciate ligament replacement.
        J. Biomech. 2016; 49 (Jun 14): 1607-1612
        • Kaeding C.C.
        • Aros B.
        • Pedroza A.
        • Pifel E.
        • Amendola A.
        • Andrish J.T.
        • Dunn W.R.
        • Marx R.G.
        • McCarty E.C.
        • Parker R.D.
        • Wright R.W.
        Allograft versus autograft anterior cruciate ligament reconstruction: predictors of failure from a MOON prospective longitudinal cohort.
        Sports Health. 2011; 3 (Jan): 73-81
        • Kaeding C.C.
        • Pedroza A.D.
        • Reinke E.K.
        • Huston L.J.
        • Moon Consortium
        • Spindler K.P.
        Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort.
        Am. J. Sports Med. 2015; 43 (Jul): 1583-1590
        • Kim S.Y.
        • Park J.E.
        • Lee Y.J.
        • Seo H.J.
        • Sheen S.S.
        • Hahn S.
        • Jang B.H.
        • Son H.J.
        Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity.
        J. Clin. Epidemiol. 2013; 66 (Apr 1): 408-414
        • Kim S.Y.
        • Park J.E.
        • Lee Y.J.
        • Seo H.J.
        • Sheen S.S.
        • Hahn S.
        • Jang B.H.
        • Son H.J.
        Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity.
        J. Clin. Epidemiol. 2013; 66 (Apr 1): 408-414
        • Lansdown D.A.
        • Riff A.J.
        • Meadows M.
        • Yanke A.B.
        • Bach B.R.
        What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review.
        Clin. Orthop. Relat. Res. 2017; 475 (Oct): 2412-2426
        • Lobb R.
        • Tumilty S.
        • Claydon L.S.
        A review of systematic reviews on anterior cruciate ligament reconstruction rehabilitation.
        Phys. Ther. Sport. 2012; 13 (Nov 1): 270-278
        • Mabe I.
        • Hunter S.
        Quadriceps tendon allografts as an alternative to Achilles tendon allografts: a biomechanical comparison.
        Cell Tissue Bank. 2014; 15 (Dec 1): 523-529
        • Marieswaran M.
        • Jain I.
        • Garg B.
        • Sharma V.
        • Kalyanasundaram D.
        A review on biomechanics of anterior cruciate ligament and materials for reconstruction.
        Appl. Bio. Biomech. 2018; 2018 (May 13)
        • Merkely G.
        • Ackermann J.
        • Farina E.M.
        • VanArsdale C.
        • Lattermann C.
        • Gomoll A.H.
        Shorter storage time is strongly associated with improved graft survivorship at 5 years after osteochondral allograft transplantation.
        Am. J. Sports Med. 2020; 48 (Nov): 3170-3176
        • Noyes F.R.
        • Butler D.L.
        • Grood E.S.
        • Zernicke R.F.
        • Hefzy M.S.
        Biomechanical analysis of human ligament grafts used in knee-ligament.
        J. Bone Joint Surg. Am. 1984; 66: 344-352
        • Pailhé R.
        • Cavaignac E.
        • Murgier J.
        • Laffosse J.M.
        • Swider P.
        Biomechanical study of ACL reconstruction grafts.
        J. Orthop. Res. 2015; 33 (Aug): 1188-1196
        • Pappas E.
        • Zampeli F.
        • Xergia S.A.
        • Georgoulis A.D.
        Lessons learned from the last 20 years of ACL-related in vivo-biomechanics research of the knee joint.
        Knee Surg. Sports Traumatol. Arthrosc. 2013; 21 (Apr 1): 755-766
        • Paschos N.K.
        • Gartzonikas D.
        • Barkoula N.M.
        • Moraiti C.
        • Paipetis A.
        • Matikas T.E.
        • Georgoulis A.D.
        Cadaveric study of anterior cruciate ligament failure patterns under uniaxial tension along the ligament.
        Arthroscopy. 2010; 26 (Jul 1): 957-967
        • Pearsall IV, A.W.
        • Hollis J.M.
        • Russell Jr., G.V.
        • Scheer Z.
        A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee.
        Arthroscopy. 2003; 19 (Dec 1): 1091-1096
        • Posthumus M.
        • Collins M.
        • September A.V.
        • Schwellnus M.P.
        The intrinsic risk factors for ACL ruptures: an evidence-based review.
        Phys. Sportsmed. 2011; 39 (Feb 1): 62-73
        • Rudy Mustamsir E.
        • Phatama K.Y.
        Tensile strength comparison between peroneus longus and hamstring tendons: a biomechanical study.
        Int. J. Surg. 2017; 9 (Jan 1): 41-44
        • Schmidt K.J.
        • Tírico L.E.
        • McCauley J.C.
        • Bugbee W.D.
        Fresh osteochondral allograft transplantation: is graft storage time associated with clinical outcomes and graft survivorship?.
        Am. J. Sports Med. 2017; 45 (Aug): 2260-2266
        • Schmidt E.C.
        • Chin M.
        • Aoyama J.T.
        • Ganley T.J.
        • Shea K.G.
        • Hast M.W.
        Mechanical and microstructural properties of pediatric anterior cruciate ligaments and autograft tendons used for reconstruction.
        Orthop. J. Sports Med. 2019; 7 (Jan 23. 2325967118821667)
        • Shani R.H.
        • Umpierez E.
        • Nasert M.
        • Hiza E.A.
        • Xerogeanes J.
        Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction.
        Arthroscopy. 2016; 32 (Jan 1): 71-75
        • Smith C.W.
        • Young I.S.
        • Kearney J.N.
        Mechanical properties of tendons: changes with sterilization and preservation.
        ASME J. Biomech. Eng. 1996; 118 (February): 56-61
        • Tis J.E.
        • Klemme W.R.
        • Kirk K.L.
        • Murphy K.P.
        • Cunningham B.
        Braided hamstring tendons for reconstruction of the anterior cruciate ligament: a biomechanical analysis.
        Am. J. Sports Med. 2002; 30 (Sep): 684-688
        • Urchek R.
        • Karas S.
        Biomechanical comparison of quadriceps and 6-strand hamstring tendon grafts in anterior cruciate ligament reconstruction.
        Orthop. J. Sports Med. 2019; 7 (Oct 16. 2325967119879113)
        • Wei J.
        • Yang H.B.
        • Qin J.B.
        • Yang T.B.
        A meta-analysis of anterior cruciate ligament reconstruction with autograft compared with nonirradiated allograft.
        Knee. 2015; 22 (Oct 1): 372-379
        • Wilson T.W.
        • Zafuta M.P.
        • Zobitz M.
        A biomechanical analysis of matched bone-patellar tendon-bone and double-looped semitendinosus and gracilis tendon grafts.
        Am. J. Sports Med. 1999; 27 (Mar): 202-207
        • Wong A.K.
        • Calvo R.
        • Schaffler B.C.
        • Nixon R.A.
        • Carrero L.C.
        • Neufeld E.V.
        • Grande D.A.
        • Calvo R.
        Biomechanical and geometric characterization of peroneus longus allografts with respect to age.
        Clin. Biomech. 2019; 67 (Jul 1): 90-95
        • Woo S.L.
        • Hollis J.M.
        • Adams D.J.
        • Lyon R.M.
        • Takai S.
        Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation.
        Am. J. Sports Med. 1991; 19 (May): 217-225
        • Woo S.L.
        • Fox R.J.
        • Sakane M.
        • Livesay G.A.
        • Rudy T.W.
        • Fu F.H.
        Biomechanics of the ACL: measurements of in situ force in the ACL and knee kinematics.
        Knee. 1998; 5 (Oct 1): 267-288
        • Woo S.L.
        • Debski R.E.
        • Withrow J.D.
        • Janaushek M.A.
        Biomechanics of knee ligaments.
        Am. J. Sports Med. 1999; 27: 533-543
        • Yanke A.B.
        • Bell R.
        • Lee A.S.
        • Shewman E.
        • Wang V.M.
        • Bach Jr., B.R.
        Central-third bone–patellar tendon–bone allografts demonstrate superior biomechanical failure characteristics compared with hemi–patellar tendon grafts.
        Am. J. Sports Med. 2013; 41 (Nov): 2521-2526
        • Zhao J.
        • Huangfu X.
        The biomechanical and clinical application of using the anterior half of the peroneus longus tendon as an autograft source.
        Am. J. Sports Med. 2012; 40 (Mar): 662-671