Advertisement

The effects of age and sex on the elastic mechanical properties of human abdominal fascia

  • Author Footnotes
    1 Present adress: Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., Sofia, Bulgaria
    Miglena Kirilova-Doneva
    Correspondence
    Corresponding author at: Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria.
    Footnotes
    1 Present adress: Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., Sofia, Bulgaria
    Affiliations
    Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria

    Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
    Search for articles by this author
  • Author Footnotes
    2 Present adress: Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, Sofia, Bulgaria
    Dessislava Pashkouleva
    Footnotes
    2 Present adress: Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, Sofia, Bulgaria
    Affiliations
    Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
    Search for articles by this author
  • Author Footnotes
    1 Present adress: Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., Sofia, Bulgaria
    2 Present adress: Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, Sofia, Bulgaria

      Highlights

      • Mechanical properties of human abdominal fascia were estimated by uniaxial tension tests.
      • Stress–stretch ratio curves with respect to age, sex and direction of loading were obtained.
      • An increase in the mechanical stiffness of the tissue with age was confirmed.
      • As a trend the female samples are stiffer than male samples.
      • The results have application for personalized medicine.

      Abstract

      Background

      The abdominal hernias become more prevalent with age, that can adversely affect life quality. The mechanical properties of abdominal wall layers are supposed to play a significant role in developing of an abdominal hernia.The objective of this study was to determine the mechanical properties of the human abdominal layer – fascia and the effects of age and sex on it for choosing the proper brand of hernia mesh.

      Methods

      78 samples harvested from 19 fresh cadavers were subjected to uniaxial tension tests and divided into four groups according to age. Group A corresponds to age up to 60 years, Group B to age 61–70 years, Group C to age 71–80 years and Group D to 81–90 years. Median stress–stretch ratio curves with respect to age, sex and direction of loading were obtained. Median values of the maximum tensile stress, stretch at maximum stress and elastic modulus calculated at 5% strain were determined.

      Findings

      The abdominal fascia showed large variations between specimens depending on age and sex. The stiffness of the fascia increased with age. There is statistically significant differences between the median curves of male samples (P = 0.008) and female samples (P = 0.019) according to age in the L direction. Statistically significant differences between the values of maximum stress (P = 0.01) and elastic modulus (P = 0.003) from Group C in the L direction and maximum stress (P = 0.03) from Group D in the T direction was established.

      Interpretation

      The female samples are stiffer than male samples especially after 80 years.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Astruc L.
        • Meulaere M.
        • Witz J.-F.
        • Nováček V.
        • Turquier F.
        • Hoc T.
        • Brieu M.
        Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.
        J. Mech. Behav. Biomed. Mater. 2018; 82: 45-50https://doi.org/10.1016/j.jmbbm.2018.03.012
        • Ben Abdelounis H.
        • Nicolle S.
        • Ottenio M.
        • Beillas P.
        • Mitton D.
        Effect of twoloading rates on the elasticity of the human anterior rectus sheath.
        J. Mech. Behav. Biomed. Mater. 2013; 20: 1-5https://doi.org/10.1016/j.jmbbm.2012.12.002
        • Bhattarai A.
        • Frotscher R.
        • Staat M.
        Biomechanical study of the female pelvic floor dysfunction using the finite element method.
        in: Proc. of the 3rd YIC, GACM Colloquium. 2015
        • Bielski P.
        • Lubowiecka I.
        Surface sliding in human abdominal wallnumerical models: Comparison of singlesurfaceand multi-surface composites.
        in: Shell Structures: Theory and Applications. 1st ed. vol. 4. CRC Press, 2017: 499-502
        • Calvo B.
        • Pena E.
        • Martins P.
        • Mascarenhas T.
        • Doblare M.
        • Natal Jorge R.M.
        • Ferreira A.
        On modelling damage process in vaginaltissue.
        J. Biomech. 2009; 42: 642-651https://doi.org/10.1016/j.jbiomech.2008.12.002
        • Cardoso M.H.
        Experimental Study of the Human Anterolateral Abdominal Wall:Biomechanical Properties of Fascia and Muscles.
        (Master’s Thesis) University of Porto, Portugal2012
        • Casabona G.
        • Frank K.
        • Koban K.
        • Schenck T.
        • Lopez V.
        • Webb K.
        • Hamade H.
        • Freytag D.
        • Green J.
        • Cotofana S.
        Influence of age, sex, and body mass index on the depth of the superficial fascia in the face and neck.
        Dermatol. Surg. 2019; 45: 1365-1373https://doi.org/10.1097/DSS.0000000000001909
        • Casanova A.B.
        • Trindade E.N.
        • Trindade M.R.M.
        Collagen in the transversalis fascia of patients with indirect inguinal hernia.
        Am. J. Surg. 2009; 198: 1-5https://doi.org/10.1016/j.amjsurg.2008.07.021
        • Dabbas N.
        • Adams K.
        • Pearson K.
        • Royle G.T.
        Frequency of abdominal wall hernias: is classical teaching out of date?.
        JRSM Short Rep. 2011; 2: 1-5https://doi.org/10.1258/shorts.2010.010071
        • Dunn M.G.
        • Silver F.H.
        Viscoelastic behavior of human connective tissues: relative contribution of viscous and elastic components.
        Connect. Tissue Res. 1983; 12: 59-70
        • Glassow F.
        An evaluation of the posterior wall of the inguinal canal in women.
        Brit. J. Surg. 1973; 60: 342-344https://doi.org/10.1002/bjs.1800600503
        • Hollinsky C.
        • Sandberg S.
        Measurement of the tensile strength of the ventral abdominal wall in comparison with scar tissue.
        Clin. Biomech. 2007; 22: 88-92https://doi.org/10.1016/j.clinbiomech.2006.06.002
        • Huerta J.
        • García J.
        Effect of gender, age and anthropometric variables on plantar fascia thickness at different locations in asymptomatic subjects.
        Eur. J. Radiol. 2007; 62: 449-453https://doi.org/10.1016/j.ejrad.2007.01.002
        • Isaza-Restrepo A.
        • Martin-Saavedra J.
        • Velez-Leal J.
        • Vargas-Barato F.
        • Riveros-Dueñas R.
        The peritoneum: beyond the tissue – a review.
        Front. Physiol. 2018; (15 June 2018)https://doi.org/10.3389/fphys.2018.00738
        • Junge K.
        • Klinge U.
        • Prescher C.
        • Giboni P.
        • Niewiera M.
        • Schumpelick V.
        Elasticity of the anterior abdominal wall and impact for reparation of the incisional hernias using mesh implants.
        Hernia. 2001; 5: 113-118https://doi.org/10.1007/s100290100019
        • Kirilova M.
        • Stoytchev S.
        • Pashkouleva D.
        • Kavardzhikov V.
        Experimental study of mechanical properties of human abdominal fascia.
        Med. Eng. Phys. 2011; 33: 1-6https://doi.org/10.1016/j.medengphy.2010.07.017
        • Kirilova M.
        • Pashkouleva D.
        • Kavardzhikov V.
        The influence of gender on the elastic mechanical properties of human abdominal fascia.
        in: Comptes Rendus de l’Academie Bulgare des Sciences. 66. 2013: 871-876
        • Kirilova-Doneva M.
        • Pashkouleva D.
        • Stoytchev S.
        Age-related changes in mechanical properties of human abdominal fascia.
        Med. Biol. Eng. Comput. 2020; 58: 1565-1573https://doi.org/10.1007/s11517-020-02172-2
        • Kureshi A.
        • Vaiude P.
        • Nazhat S.
        • Petrie A.
        • Brown R.
        Matrix mechanical properties of transversalis fascia in inguinal herniation as a model for tissue expansion.
        J. Biomech. 2008; 41: 3462-3468https://doi.org/10.1016/j.jbiomech.2008.08.018
        • Lyons M.
        • Mohan H.
        • Winter D.C.
        • Simms C.K.
        Biomechanical abdominal wall model applied to hernia repair.
        Br. J. Surg. 2015; 102: e133-e139https://doi.org/10.1002/bjs.9687
        • Martins P.
        • Pena E.
        • Calvo B.
        • Doblare M.
        • Mascarenhas T.
        • Natal Jorge R.N.
        • Ferreira A.
        Prediction of nonlinear elasticbehavior of vaginal tissue: experimental results and modelformulation.
        Comput. Methods Biomech. Biomed. Eng. 2010; 13: 327-337https://doi.org/10.1080/10255840903208197
        • Martins P.
        • Pena E.
        • Natal Jorge R.M.
        • Santos A.
        • Santos L.
        • Mascarenhas T.
        • Calvo B.
        Mechanical characterization and constitutive modelling of thedamage process in rectus sheath.
        J. Mech. Behav. Biomed. Mater. 2012; 8: 111-122https://doi.org/10.1016/j.jmbbm.2011.12.005
        • Minns R.J.
        • Tinckler L.F.
        Structural and mechanical aspects of prosthetic herniorrhaphy.
        J. Biomech. 1976; 9: 435-438https://doi.org/10.1016/0021-9290(76)90085-3
        • Otsuka Sh.
        • Yakura T.
        • Ohmichi Y.
        • Ohmichi M.
        • Naito M.
        • Nakano T.
        • Kawakami Y.
        Site specificity of mechanical and structural properties of human fascia lata and their gender differences: a cadaveric study.
        J. Biomech. 2018; 77: 69-75https://doi.org/10.1016/j.jbiomech.2018.06.018
        • Rath A.M.
        • Zhang J.
        • Chevrel J.P.
        The sheath of the rectus abdominis muscle: ananatomical and biomechanical study.
        Hernia. 1997; 1: 139-142https://doi.org/10.1007/BF02426420
        • Schumpelick V.
        • Nyhus L.
        Meshes: benefits and risks, 2-nd ed.
        Springer. 2004; https://doi.org/10.1007/978-3-642-18720-9
        • Skandalakis J.
        • Gray S.
        • Colborn G.
        • Skandalakis L.
        • Colbora G.
        • Pemberton L.
        Surgical anatomy of the ingvinal area.
        World J. Surg. 1989; 13: 490-498
        • Song Ch.
        • Alijani A.
        • Frank T.
        • Hanna G.
        • Cuschieri A.
        Elasticity of the living abdominal wall in laparoscopic surgery.
        J. Biomech. 2006; 39: 587-591https://doi.org/10.1016/j.jbiomech.2004.12.019
        • Taş S.
        Effect of gender on mechanical properties of the plantar fascia and heel fat pad.
        Foot Ankle Spec. 2018; 11: 403-409https://doi.org/10.1177/1938640017735891
        • Todoros S.
        • Biz C.
        • Ruggieri P.
        • Pavan P.
        Experimental analysis of plantar fascia mehanical properties in subjects with foot pathologies.
        Appl. Sci. 2021; 11: 1517-1528https://doi.org/10.3390/app11041517
        • Tran D.
        • Podwojewski F.
        • Beillas P.
        • Ottenio M.
        • Voirin D.
        • Turquier F.
        • Mitton D.
        Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities.
        J. Mech. Behav. Biomed. Mater. 2016; 60: 451-459https://doi.org/10.1016/j.jmbbm.2016.03.001
        • Trindade V.L.A.
        • Martins P.A.L.S.
        • Santos S.
        • Parente M.P.L.
        • Natal Jorge R.M.
        • Santos A.
        • Santos L.
        • Fernandes J.M.
        Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests.
        J. Biomech. 2012; 45: 199-201https://doi.org/10.1016/j.jbiomech.2011.09.018
        • Tuset L.
        • Fortuny G.
        • Herrero J.
        • Puigjaner D.
        • López J.M.
        Implementation of a new constitutive model for abdominal muscles.
        Comput. Methods Prog. Biomed. 2019; 179 (ar. nr. 104988)https://doi.org/10.1016/j.cmpb.2019.104988
        • Wolloscheck T.
        • Gaumann A.
        • Terzic A.
        • Heintz A.
        • Jungiger T.
        • Konerding M.A.
        Inguinal hernia: measurement of the biomechanics of the lower abdominal wall and the inguinal canal.
        Hernia. 2004; 8: 233-241https://doi.org/10.1007/s10029-004-0224-7
        • Zwirner J.
        • Scholze M.
        • Waddell J.N.
        • Ondruschka B.
        • Hammer N.
        Mechanical properties of human dura mater in tension – an analysis at an age range of 2 to 94 years.
        Sci. Rep. 2019; 9 (art. nr. 16655)https://doi.org/10.1038/s41598-019-52836-9