Personalised gravitational loading of the cervical spine from biplanar X-rays for asymptomatic and clinical subjects in neutral standing position

  • Christophe Muth-seng
    Corresponding author at: Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers, 151 Boulevard de l'Hôpital, 75013 Paris, France.
    Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, F-75013, Paris, France
    Search for articles by this author
  • Maxime Huneidi
    Service de chirurgie orthopédique et traumatologique, Groupe Hospitalier Pellegrin, CHU de Bordeaux, Bordeaux 33076, France
    Search for articles by this author
  • Cécile Heidsieck
    Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, F-75013, Paris, France
    Search for articles by this author
  • Sébastien Laporte
    Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, F-75013, Paris, France
    Search for articles by this author
  • Jean-Yves Le Coz
    Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, F-75013, Paris, France
    Search for articles by this author
  • Olivier Gille
    Service de chirurgie orthopédique et traumatologique, Groupe Hospitalier Pellegrin, CHU de Bordeaux, Bordeaux 33076, France
    Search for articles by this author
  • Wafa Skalli
    Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, F-75013, Paris, France
    Search for articles by this author


      • Method to obtain gravitational cervical spine loading from biplanar X-rays.
      • Significant differences in loading with age and cervical surgery.
      • Differences related to postural changes.
      • Should facilitate muscle force quantification for patient evaluation.



      As a leading cause of disability with a high societal and economic cost, it is crucial to better understand risk factors of neck pain and surgical complications. Getting subject-specific external loading is essential for quantifying muscle forces and joint loads but it requires exertion trials and load cells which are uncommon in clinical settings.


      This paper presents a method to compute the gravitational loading at four levels of the cervical spine (C3C4, C4C5, C5C6, C6C7) in neutral standing position from biplanar radiographs exclusively. The resulting load was decomposed in local disc frames and its components were used to compare different populations: 118 asymptomatic subjects and 46 patients before and after surgery (anterior cervical discectomy and fusion or total disc replacement). Comparisons were performed at C6C7 and the upper level adjacent to surgery.


      Significant changes in gravitational loading were observed with age in healthy subjects as well as in patients after surgery and have been associated with changes in posture.


      This approach quantifies the influence of postural changes on gravitational loading on the cervical spine. It represents a simple way to obtain necessary input for muscle force quantification models in clinical routine and to use them for patient evaluation. The study of the subsequent subject-specific spinal loading could help further the understanding of cervical spine biomechanics, degeneration mechanisms and complications following surgery.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Alizadeh M.
        • Aurand A.
        • Knapik G.G.
        • Dufour J.S.
        • Mendel E.
        • Bourekas E.
        • Marras W.S.
        An electromyography-assisted biomechanical cervical spine model: model development and validation.
        Clin. Biomech. 2020; 80105169
        • Alpayci M.
        • Şenköy E.
        • Delen V.
        • Şah V.
        • Yazmalar L.
        • Erden M.
        • Toprak M.
        • Kaplan Ş.
        Decreased neck muscle strength in patients with the loss of cervical lordosis.
        Clin. Biomech. 2016; 33: 98-102
        • Amabile C.
        • Nérot A.
        • Choisne J.
        • Pillet H.
        • Lafage V.
        • Skalli W.
        Alignment of centers of mass of body segments with the gravity line.
        Comput. Methods Biomech. Biomed. Engin. 2015; 18: 1870-1871
        • Amabile C.
        • Choisne J.
        • Nérot A.
        • Pillet H.
        • Skalli W.
        Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling.
        J. Biomech. [Internet]. 2016; 49: 1162-1169
        • Barrett J.M.
        • McKinnon C.
        • Callaghan J.P.
        Cervical spine joint loading with neck flexion.
        Ergonomics [Internet]. 2020; 63: 101-108
        • Bayoglu R.
        • Galibarov P.E.
        • Verdonschot N.
        • Koopman B.
        • Homminga J.
        Twente spine model: a thorough investigation of the spinal loads in a complete and coherent musculoskeletal model of the human spine.
        Med. Eng. Phys. [Internet]. 2019; 68: 35-45
        • Bevevino A.J.
        • Hilibrand A.S.
        Adjacent segment disease: incidence and recommended treatment.
        Semin Spine Surg. 2016; 28: 107-114
        • Bible J.E.
        • Kang J.D.
        Anterior cervical discectomy and fusion: surgical indications and outcomes.
        Semin Spine Surg. 2016; 28: 80-83
        • Binder A.
        Musculoskeletal disorders neck pain search date may 2007 musculoskeletal disorders neck pain.
        Clin. Evid. (Online). 2008; 08: 1-34
        • Boyle J.J.W.
        • Milne N.
        • Singer K.P.
        Influence of age on cervicothoracic spinal curvature: an ex vivo radiographic survey.
        Clin. Biomech. 2002; 17: 361-367
        • Cheng C.-H.
        • Cheng K., H.-Y.
        • Chen P.-C., C.
        • Lin K.-H.
        • Liu W.-Y.
        • Wang S.-F.
        • Hsu W.-L.
        • Chuang Y.-F.
        Altered co-contraction of cervical muscles in Young adults with chronic neck pain during voluntary neck motions.
        J. Phys. Ther. Sci. 2014; 26: 587-590
        • Choi S.H.
        • Cho J.H.
        • Hwang C.J.
        • Lee C.S.
        • Gwak H.W.
        • Lee D.H.
        Preoperative radiographic parameters to predict a higher pseudarthrosis rate after anterior cervical discectomy and fusion.
        Spine (Phila Pa 1976). 2017; 42: 1772-1778
        • Clauser C.E.
        • McConville J.T.
        • Young J.W.
        Weight, Volume, and Center of Mass of Segments of the Human Body.
        Springfield, 1969
        • Côté P.
        • Carroll L.J.
        • Carragee E.J.
        • Nordin M.
        • Guzman J.
        • van der Velde G.
        • Cassidy J.D.
        • Carroll L.J.
        • Hogg-Johnson S.
        • Holm L.W.
        • et al.
        The burden and determinants of neck pain in workers.
        Spine (Phila Pa 1976). 2008; 33: S60-S74
        • Côté P.
        • Kristman V.
        • Vidmar M.
        • Van Eerd D.
        • Hogg-Johnson S.
        • Beaton D.
        • Smith P.M.
        The prevalence and incidence of work absenteeism involving neck pain. A cohort of ontario lost-time claimants.
        J. Manipulative Physiol. Ther. 2009; 32: S219-S226
        • Dempster W.T.
        • Gaughran G.R.L.
        Properties of body segments based on size and weight.
        Am. J. Anat. 1967; 120: 33-54
        • Dieleman J.L.
        • Baral R.
        • Birger M.
        • Bui A.L.
        • Bulchis A.
        • Chapin A.
        • Hamavid H.
        • Horst C.
        • Johnson E.K.
        • Joseph J.
        • et al.
        US spending on personal health care and public health, 1996-2013.
        JAMA - J. Am. Med. Assoc. 2016; 316: 2627-2646
        • Dubousset J.
        • Charpak G.
        • Skalli W.
        • Deguise J.
        • Kalifa G.
        EOS: a new imaging system with low dose radiation in standing position for spine and bone; joint disorders.
        J. Musculoskelet. Res. 2010; 13: 1-12
        • Falla D.
        • Farina D.
        • Dahl M.K.
        • Graven-Nielsen T.
        • Kanstrup Dahl M.
        • Graven-Nielsen T.
        Muscle pain induces task-dependent changes in cervical agonist/antagonist activity.
        J. Appl. Physiol. 2007; 102: 601-609
        • Fejer R.
        • Kyvik K.O.
        • Hartvigsen J.
        The prevalence of neck pain in the world population: a systematic critical review of the literature.
        Eur. Spine J. 2006; 15: 834-848
        • Fernández-de-las-Peñas C.
        • Falla D.
        • Arendt-Nielsen L.
        • Farina D.
        Cervical muscle co-activation in isometric contractions is enhanced in chronic tension-type headache patients.
        Cephalalgia. 2008; 28: 744-751
        • Fernández-De-Las-Peñas C.
        • Hernández-Barrera V.
        • Alonso-Blanco C.
        • Palacios-Ceña D.
        • Carrasco-Garrido P.
        • Jiménez-Sánchez S.
        • Jiménez-García R.
        Prevalence of neck and low back pain in community-dwelling adults in spain: A population-based national study.
        Spine (Phila Pa 1976). 2011; 36
        • Gajny L.
        • Ebrahimi S.
        • Vergari C.
        • Angelini E.
        • Skalli W.
        Quasi-automatic 3D reconstruction of the full spine from low-dose biplanar X-rays based on statistical inferences and image analysis.
        Eur. Spine J. [Internet]. 2019; 28: 658-664
        • Gandhi A.A.
        • Grosland N.M.
        • Kallemeyn N.A.
        • Kode S.
        • Fredericks D.C.
        • Smucker J.D.
        Biomechanical analysis of the cervical spine following disc degeneration, disc fusion, and disc replacement: a finite element study.
        Int. J. Spine Surg. 2019; 13: 491-500
        • Gore D.R.
        • Sepic S.B.
        • Gardner G.M.
        Roentgenographic findings of the cervical spine in asymptomatic people.
        Spine (Phila Pa 1976). 1986; 11: 521-524
        • Guérin P.
        • Obeid I.
        • Gille O.
        • Bourghli A.
        • Luc S.
        • Pointillart V.
        • Vital J.M.
        Sagittal alignment after single cervical disc arthroplasty.
        J. Spinal Disord. Tech. 2012; 25: 10-16
        • Heidsieck C.
        • Gajny L.
        • Travert C.
        • Lazennec J.Y.
        • Skalli W.
        Effect of postural alignment alteration with age on vertebral strength.
        Osteoporos. Int. 2021; (In press)
        • Hogg-Johnson S.
        • van der Velde G.
        • Carroll L.J.
        • Holm L.W.
        • Cassidy J.D.
        • Guzman J.
        • Côté P.
        • Haldeman S.
        • Ammendolia C.
        • Carragee E.
        • et al.
        The burden and determinants of neck pain in the general population. results of the bone and joint decade 2000-2010 task force on neck pain and its associated disorders.
        J. Manipulative Physiol. Ther. 2009; 32: 39-51
        • Humbert L.
        • De Guise J.A.
        • Aubert B.
        • Godbout B.
        • Skalli W.
        3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences.
        Med. Eng. Phys. [Internet]. 2009; 31: 681-687
        • Hyun S.J.
        • Kim K.J.
        • Jahng T.A.
        • Kim H.J.
        Clinical impact of T1 slope minus cervical lordosis after multilevel posterior cervical fusion surgery.
        Spine (Phila Pa 1976). 2017; 42: 1859-1864
        • John J.D.
        • Saravana Kumar G.
        • Yoganandan N.
        Cervical spine morphology and ligament property variations: a finite element study of their influence on sagittal bending characteristics.
        J. Biomech. [Internet]. 2019; 85: 18-26
        • Katsuura A.
        • Hukuda S.
        • Saruhashi Y.
        • Mori K.
        Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels.
        Eur. Spine J. 2001; 10: 320-324
        • Kim S.W.
        • Shin J.H.
        • Arbatin J.J.
        • Park M.S.
        • Chung Y.K.
        • McAfee P.C.
        Effects of a cervical disc prosthesis on maintaining sagittal alignment of the functional spinal unit and overall sagittal balance of the cervical spine.
        Eur. Spine J. 2008; 17: 20-29
        • Klinich K.D.
        • Ebert S.
        • Van Ee C.
        • Flannagan C.
        • Prasad M.
        • Reed M.
        • Schneider L.
        Cervical spine geometry in the automotive seated posture: Variations with age, stature, and gender.
        in: Proc 48th Stapp Car Crash Conf. [place unknown]. 2004
        • Kong L.
        • Cao J.
        • Wang L.
        • Shen Y.
        Prevalence of adjacent segment disease following cervical spine surgery a PRISMA-compliant systematic review and meta-analysis.
        Medicine (Baltimore). 2016; 95e4171
        • Lan Z.
        • Huang Y.
        • Xu W.
        Relationship between T1 slope minus C2-7 lordosis and cervical alignment parameters after adjacent 2-level anterior cervical diskectomy and fusion of lower cervical spine.
        World Neurosurg. [Internet]. 2019; 122: e1195-e1201
        • Lau K.T.
        • Cheung K.Y.
        • Chan Kwok B.
        • Chan M.H.
        • Lo K.Y.
        • Wing Chiu T.T.
        Relationships between sagittal postures of thoracic and cervical spine, presence of neck pain, neck pain severity and disability.
        Man. Ther. [Internet]. 2010; 15: 457-462
        • Laville A.
        • Laporte S.
        • Skalli W.
        Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns.
        J. Biomech. 2009; 42: 1409-1415
        • Liu J.
        • Liu P.
        • Ma Z.
        • Mou J.
        • Wang Z.
        • Sun D.
        • Cheng J.
        • Zhang D.
        • Xiao J.
        The effects of aging on the profile of the cervical spine.
        Med (United States). 2019; 98: 1-5
        • Mackiewicz A.
        • Banach M.
        • Denisiewicz A.
        • Bedzinski R.
        Comparative studies of cervical spine anterior stabilization systems - finite element analysis.
        Clin. Biomech. [Internet]. 2016; 32: 72-79
        • Marquez-Lara A.
        • Nandyala S.V.
        • Fineberg S.J.
        • Singh K.
        Current trends in demographics, practice, and in-hospital outcomes in cervical spine surgery: A national database analysis between 2002 and 2011.
        Spine (Phila Pa 1976). 2014; 39: 476-481
        • Moroney S.P.
        • Schultz A.B.
        • Miller J.A.A.A.
        Analysis and measurement of neck loads.
        J. Orthop. Res. 1988; 6: 713-720
        • Mortensen J.D.
        • Vasavada A.N.
        • Merryweather A.S.
        The inclusion of hyoid muscles improve moment generating capacity and dynamic simulations in musculoskeletal models of the head and neck.
        PLoS One. 2018; 13: 1-14
        • Murray C.
        • Atkinson C.
        • Bhalla K.
        • Birbeck G.
        • Burstein R.
        • Chou D.
        The state of US health, 1990-2010: burden of diseases, injuries, and risk factors.
        JAMA - J. Am. Med. Assoc. [Internet]. 2013; 310: 591-608
        • Nérot A.
        • Choisne J.
        • Amabile C.
        • Travert C.
        • Pillet H.
        • Wang X.
        • Skalli W.
        A 3D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability.
        J. Biomech. [Internet]. 2015; 48: 4322-4326
        • Nikkhoo M.
        • Cheng C.H.
        • Wang J.L.
        • Khoz Z.
        • El-Rich M.
        • Hebela N.
        • Khalaf K.
        Development and validation of a geometrically personalized finite element model of the lower ligamentous cervical spine for clinical applications.
        Comput. Biol. Med. [Internet]. 2019; 109: 22-32
        • Okada E.
        • Matsumoto M.
        • Ichihara D.
        • Chiba K.
        • Toyama Y.
        • Fujiwara H.
        • Momoshima S.
        • Nishiwaki Y.
        • Hashimoto T.
        • Ogawa J.
        • et al.
        Aging of the cervical spine in healthy volunteers: a 10-year longitudinal magnetic resonance imaging study.
        Spine (Phila Pa 1976). 2009; 34: 706-712
        • Rousseau M.-A.
        • Laporte S.
        • Chavary-Bernier E.
        • Lazennec J.-Y.J.Y.
        • Skalli W.
        Reproducibility of measuring the shape and three-dimensional position of cervical vertebrae in upright position using the EOS stereoradiography system.
        Spine (Phila Pa 1976). 2007; 32: 2569-2572
        • Rousseau M.-A.
        • Bonnet X.
        • Skalli W.
        Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine: a finite element study.
        Spine (Phila Pa 1976). 2008; 33: E10-E14
        • Steffen J.S.
        • Obeid I.
        • Aurouer N.
        • Hauger O.
        • Vital J.M.
        • Dubousset J.
        • Skalli W.
        3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers.
        Eur. Spine J. 2010; 19: 760-767
        • Thenard T.
        • Vergari C.
        • Hernandez T.
        • Vialle R.
        • Skalli W.
        Analysis of center of mass and gravity-induced vertebral axial torque on the scoliotic spine by barycentremetry.
        Spine Deform. 2019; 7: 525-532
        • Trinh K.
        • Graham N.
        • Gross A.
        • Ch G.
        • Wang E.
        • Id C.
        • Tm K.
        Acupuncture for neck disorders ( review ).
        Cochrane Collab. 2006; 3: 1-41
        • Van den Abbeele M.
        • Li F.
        • Pomero V.
        • Bonneau D.
        • Sandoz B.
        • Laporte S.
        • Skalli W.
        A subject-specific biomechanical control model for the prediction of cervical spine muscle forces.
        Clin. Biomech. [Internet]. 2018; 51: 58-66
        • Vasavada A.N.
        • Nevins D.D.
        • Monda S.M.
        • Hughes E.
        • Lin D.C.
        Gravitational demand on the neck musculature during tablet computer use.
        Ergonomics. 2015; 58: 990-1004
        • Wang M.C.
        • Kreuter W.
        • Wolfla C.E.
        • Maiman D.J.
        • Deyo R.A.
        Trends and variations in cervical spine surgery in the United States: medicare beneficiaries, 1992 to 2005.
        Spine (Phila Pa 1976). 2009; 34: 953-955
        • Wang X.
        • Meng Y.
        • Liu H.
        • Chen H.
        • Wang B.
        • Hong Y.
        Cervical sagittal alignment after prestige LP cervical disc replacement: radiological results and clinical impacts from a single-center experience.
        BMC Musculoskelet. Disord. 2021; 22: 4-11
        • Xiong W.
        • Zhou J.
        • Sun C.
        • Chen Z.
        • Guo X.
        • Huo X.
        • Liu S.
        • Li J.
        • Xue Y.
        0.5-to 1-fold intervertebral distraction is a protective factor for adjacent segment degeneration in single-level anterior cervical discectomy and fusion.
        Spine (Phila Pa 1976). 2020; 45: 96-102
        • Yoganandan N.
        • Pintar F.A.
        • Zhang J.
        • Baisden J.L.
        Physical properties of the human head: mass, center of gravity and moment of inertia.
        J. Biomech. [Internet]. 2009; 42: 1177-1192