Advertisement

Evaluation of optimal implant alignment in total hip arthroplasty based on postoperative range of motion simulation

      Highlights

      • Optimal implant alignment was defined by postoperative simulation.
      • All operations were performed using combined anteversion of stem and cup technique.
      • Optimal impingement-free implant alignment was 35°–56° of combined anteversion.
      • Combined anteversion showed relationship with postoperative range of motion.
      • Combined anteversion gives fewer outliers than separate cup and stem anteversion.

      Abstract

      Background

      Dislocation after total hip arthroplasty is a frequent cause of revision surgery. This study was performed to determine the optimal implant alignment in total hip arthroplasty by simulating the postoperative range of motion.

      Methods

      All operations were performed via posterolateral approach using combined anteversion of the stem and cup technique. Maximum range of motion without implant impingement was simulated in 79 replaced hips using postoperative computed tomography and the achievement of the required range of motion defined by previous studies was assessed. Optimal cup and stem alignment for impingement-free range of motion were statistically determined using the receiver operator coefficient curve.

      Findings

      Cup inclination and anteversion, stem anteversion, and combined anteversion were 37.6°, 20.1°, 26.2°, and 46.3°, respectively. Maximum range of motion in flexion, extension, internal rotation at 90° of flexion, and external rotation were 131.8°, 42.3°, 56.4°, and 64.5°, respectively. Flexion >110°, extension >30°, internal rotation >30° at 90° of flexion, and external rotation >30° were fulfilled by 96%, 86%, 92%, and 96% of all replaced hips, respectively. Optimal implant alignment for impingement-free range of motion was 34°–43° of cup inclination, 18°–26° of cup anteversion, 17°–29° of stem anteversion, and 35°–56° of combined anteversion. Both cup and stem anteversion showed significant relationship with postoperative range of motion.

      Interpretation

      Surgeons could gain valuable insights into optimal cup and stem alignment to perform postoperative range of motion simulations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Callanan M.C.
        • Jarrett B.
        • Bragdon C.R.
        • Zurakowski D.
        • Rubash H.E.
        • Freiberg A.A.
        • Malchau H.
        The john charnley award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital.
        Clin. Orthop. Relat. Res. 2011; 469: 319-329https://doi.org/10.1007/s11999-010-1487-1
        • Danoff J.R.
        • Bobman J.T.
        • Cunn G.
        • Murtaugh T.
        • Gorroochurn P.
        • Geller J.A.
        • Macaulay W.
        Redefining the acetabular component safe zone for posterior approach total hip arthroplasty.
        J. Arthroplast. 2016; 31: 506-511https://doi.org/10.1016/j.arth.2015.09.010
        • DeLee J.G.
        Radiological demarcation of cemented sockets in total hip replacement.
        Clin. Orthop. Relat. Res. 1976; 121: 20-32
        • Dorr L.D.
        • Callaghan J.J.
        Death of the Lewinnek “Safe Zone”.
        J. Arthroplast. 2019; 34: 1-2https://doi.org/10.1016/j.arth.2018.10.035
        • Dorr L.D.
        • Malik A.
        Combined anteversion technique for total hip arthroplasty.
        Clin. Orthop. Relat. Res. 2009; : 119-127https://doi.org/10.1007/s11999-008-0598-4
        • Dorr L.D.
        • Wolf A.W.
        • Chandler R.
        • Conaty J.P.
        Classification and treatment of dislocations of total hip arthroplasty.
        Clin. Orthop. Relat. Res. 1983; 173: 151-158https://doi.org/10.1097/00003086-198303000-00019
        • Duffy G.P.
        • Wannomae K.K.
        • Rowell S.L.
        • Muratoglu O.K.
        Case report fracture of a cross-linked polyethylene liner due to impingement.
        J. Arthroplast. 2009; 24: 158.e15-158.e19https://doi.org/10.1016/j.arth.2007.12.020
        • Elkins J.M.
        • Callaghan J.J.
        • Brown T.D.
        The 2014 frank stinchfield award: the ‘landing zone’ for wear and stability in total hip arthroplasty is smaller than we thought: a computational analysis.
        Clin. Orthop. Relat. Res. 2015; 473: 441-452https://doi.org/10.1007/s11999-014-3818-0
        • Goyal P.
        • Lau A.
        • McCalden R.
        • Teeter M.G.
        • Howard J.L.
        • Lanting B.A.
        Accuracy of the modified Hardinge approach in acetabular positioning.
        Can. J. Surg. 2016; 59: 247-253https://doi.org/10.1503/cjs.011415
        • Gwam C.U.
        • Mistry J.B.
        • Mohamed N.S.
        • Thomas M.
        • Bigart K.C.
        • Mont M.A.
        • Delanois R.E.
        Current epidemiology of revision total hip arthroplasty in the United States: National inpatient Sample 2009 to 2013.
        J. Arthroplast. 2017; 32: 2088-2092https://doi.org/10.1016/j.arth.2017.02.046
        • Hara D.
        • Nakashima Y.
        • Yamamoto T.
        • Higashihara S.
        • Todo M.
        • Hirata M.
        • Akiyama M.
        • Iwamoto Y.
        Late failure of annealed highly cross-linked polyethylene acetabular liner.
        J. Mech. Behav. Biomed. Mater. 2013; 28: 206-212https://doi.org/10.1016/j.jmbbm.2013.08.003
        • Hara D.
        • Nakashima Y.
        • Hamai S.
        • Higaki H.
        • Ikebe S.
        • Shimoto T.
        • Yoshimoto K.
        • Iwamoto Y.
        Dynamic hip kinematics during the golf swing after total hip arthroplasty.
        Am. J. Sports Med. 2016; 44: 1801-1809https://doi.org/10.1177/0363546516637179
        • Harada S.
        • Hamai S.
        • Shiomoto K.
        • Hara D.
        • Fujii M.
        • Ikemura S.
        • Motomura G.
        • Nakashima Y.
        Patient-reported outcomes after primary or revision total hip arthroplasty: a propensity score-matched Asian cohort study.
        PLoS One. 2021; 16e0252112https://doi.org/10.1371/journal.pone.0252112
        • Hazratwala K.
        • Brereton S.G.
        • Grant A.
        • Dlaska C.E.
        Computer-assisted technologies in arthroplasty: navigating your way today.
        JBJS Rev. 2020; 8: 1-8https://doi.org/10.2106/JBJS.RVW.19.00157
        • Hemmerich A.
        Hip, knee, and ankle kinematics of high range of motion activities of daily living.
        J. Orthop. Res. 2006; 24: 770-781https://doi.org/10.1002/jor.20114
        • Hirata M.
        • Nakashima Y.
        • Ohishi M.
        • Hamai S.
        • Hara D.
        • Iwamoto Y.
        Surgeon error in performing intraoperative estimation of stem anteversion in cementless total hip arthroplasty.
        J. Arthroplast. 2013; 28: 1648-1653https://doi.org/10.1016/j.arth.2013.03.006
        • Hirata M.
        • Nakashima Y.
        • Itokawa T.
        • Ohishi M.
        • Sato T.
        • Akiyama M.
        • Hara D.
        • Iwamoto Y.
        Influencing factors for the increased stem version compared to the native femur in cementless total hip arthroplasty.
        Int. Orthop. 2014; 38: 1341-1346https://doi.org/10.1007/s00264-014-2289-y
        • Howie D.W.
        • Holubowycz O.T.
        • Middleton R.
        • Allen B.
        • Brumby S.
        • Chehade M.
        • Clarnette R.
        • Comley A.
        • Mintz A.
        • Montgomery R.
        • Pohl A.
        • Savvoulidis T.
        • Solomon B.
        • Van Essen J.
        • Standen A.
        • Bennier M.
        • Pannach S.
        • Ellis A.
        • Ruff S.
        • Cole E.
        • Nelson J.
        • Gear C.
        • Williams S.
        • Angliss R.
        • Beattie S.
        • Farago U.
        • Gleeson C.
        • Vanderveen A.
        • Dunin A.
        • Love B.
        • Dowsey M.
        • Farley M.
        • Booth D.
        • Gard P.
        • Walsh J.
        • Wainwright T.
        • Sargeant S.
        • Dunlop D.
        • Latham J.
        • Wakefield A.
        • Clift B.
        • Rowley D.
        • Johnston L.
        • McCormack L.
        Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: a randomized controlled trial.
        J. Bone Jt. Surg. - Ser. A. 2012; 94: 1095-1102https://doi.org/10.2106/JBJS.K.00570
        • Inoue D.
        • Kabata T.
        • Maeda T.
        • Kajino Y.
        • Fujita K.
        • Hasegawa K.
        • Yamamoto T.
        • Tsuchiya H.
        Value of computed tomography-based three-dimensional surgical preoperative planning software in total hip arthroplasty with developmental dysplasia of the hip.
        J. Orthop. Sci. 2015; 20: 340-346https://doi.org/10.1007/s00776-014-0683-3
        • Jingushi S.
        • Ohfuji S.
        • Sofue M.
        • Hirota Y.
        • Itoman M.
        • Matsumoto T.
        • Hamada Y.
        • Shindo H.
        • Takatori Y.
        • Yamada H.
        • Yasunaga Y.
        • Ito H.
        • Mori S.
        • Owan I.
        • Fujii G.
        • Ohashi H.
        • Iwamoto Y.
        • Miyanishi K.
        • Iga T.
        • Takahira N.
        • Sugimori T.
        • Sugiyama H.
        • Okano K.
        • Karita T.
        • Ando K.
        • Hamaki T.
        • Hirayama T.
        • Iwata K.
        • Nakasone S.
        • Matsuura M.
        • Mawatari T.
        Multiinstitutional epidemiological study regarding osteoarthritis of the hip in Japan.
        J. Orthop. Sci. 2010; 15: 626-631https://doi.org/10.1007/s00776-010-1507-8
        • Jolles B.M.
        • Zangger P.
        • Leyvraz P.F.
        Factors predisposing to dislocation after primary total hip arthroplasty: a multivariate analysis.
        J. Arthroplast. 2002; 17: 282-288https://doi.org/10.1054/arth.2002.30286
        • Kohno Y.
        • Nakashima Y.
        • Akiyama M.
        • Fujii M.
        • Iwamoto Y.
        Does native combined anteversion influence pain onset in patients with dysplastic hips?.
        Clin. Orthop. Relat. Res. 2015; 473: 3716-3722https://doi.org/10.1007/s11999-015-4373-z
        • Komeno M.
        • Hasegawa M.
        • Sudo A.
        • Uchida A.
        Computed tomographic evaluation of component position on dislocation after total hip arthroplasty.
        Orthopedics. 2006; 29: 1104-1108https://doi.org/10.3928/01477447-20061201-05
        • Komiyama K.
        • Nakashima Y.
        • Hirata M.
        • Hara D.
        • Kohno Y.
        • Iwamoto Y.
        Does high hip center decrease range of motion in total hip arthroplasty? A computer simulation study.
        J. Arthroplast. 2016; 31: 2342-2347https://doi.org/10.1016/j.arth.2016.03.014
        • Komiyama K.
        • Hamai S.
        • Hara D.
        • Ikebe S.
        • Higaki H.
        • Yoshimoto K.
        • Shiomoto K.
        • Gondo H.
        • Wang Y.
        • Nakashima Y.
        Dynamic hip kinematics during squatting before and after total hip arthroplasty.
        J. Orthop. Surg. Res. 2018; 13: 1-7https://doi.org/10.1186/s13018-018-0873-3
        • Kurtz W.B.
        In situ leg length measurement technique in hip arthroplasty.
        J. Arthroplast. 2012; 27: 66-73https://doi.org/10.1016/j.arth.2011.02.003
        • Learmonth I.D.
        • Young C.
        • Rorabeck C.
        The operation of the century: total hip replacement.
        Lancet. 2007; 370: 1508-1519https://doi.org/10.1016/S0140-6736(07)60457-7
        • Lewinnek G.E.
        • Lewis J.L.
        • Tarr R.
        • Compere C.L.
        • Zimmerman J.R.
        Dislocations after total arthroplasties.
        J. Bone Jt. Surg. Am. 1978; 60: 217-220
        • Marchetti E.
        • Krantz N.
        • Berton C.
        • Bocquet D.
        • Fouilleron N.
        • Migaud H.
        • Girard J.
        Component impingement in total hip arthroplasty: frequency and risk factors. A continuous retrieval analysis series of 416 cup.
        Orthop. Traumatol. Surg. Res. 2011; 97: 127-133https://doi.org/10.1016/j.otsr.2010.12.004
        • Matsushita A.
        • Nakashima Y.
        • Fujii M.
        • Sato T.
        • Iwamoto Y.
        Modular necks improve the range of hip motion in cases with excessively anteverted or retroverted femurs in THA.
        Clin. Orthop. Relat. Res. 2010; 468: 3342-3347https://doi.org/10.1007/s11999-010-1385-6
        • McCollum D.E.
        • Gray W.J.
        Dislocation after total hip arthroplasty: causes and prevention.
        Clin. Orthop. Relat. Res. 1990; : 159-170https://doi.org/10.1097/00003086-199012000-00019
        • Miki H.
        • Yamanashi W.
        • Nishii T.
        • Sato Y.
        • Yoshikawa H.
        • Sugano N.
        Anatomic hip range of motion after implantation during total hip arthroplasty as measured by a navigation system.
        J. Arthroplast. 2007; 22: 946-952https://doi.org/10.1016/j.arth.2007.02.004
        • Murphy W.S.
        • Yun H.H.
        • Hayden B.
        • Kowal J.H.
        • Murphy S.B.
        The safe zone range for cup anteversion is narrower than for inclination in THA.
        Clin. Orthop. Relat. Res. 2018; 476: 325-335https://doi.org/10.1007/s11999.0000000000000051
        • Murray D.W.
        Impingement and loosening of the long posterior wall acetabular implant.
        J. Bone Jt. Surg. Br. 1992; 74: 377-379https://doi.org/10.1302/0301-620X.74B3.1587881
        • Nadzadi M.E.
        • Pedersen D.R.
        • Yack H.J.
        • Callaghan J.J.
        • Brown T.D.
        Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation.
        J. Biomech. 2003; 36: 577-591https://doi.org/10.1016/S0021-9290(02)00232-4
        • Nakashima Y.
        • Sato T.
        • Yamamoto T.
        • Motomura G.
        • Ohishi M.
        • Hamai S.
        • Akiyama M.
        • Hirata M.
        • Hara D.
        • Iwamoto Y.
        Results at a minimum of 10 years of follow-up for AMS and PerFix HA-coated cementless total hip arthroplasty: impact of cross-linked polyethylene on implant longevity.
        J. Orthop. Sci. 2013; 18: 962-968https://doi.org/10.1007/s00776-013-0456-4
        • Nakashima Y.
        • Hirata M.
        • Akiyama M.
        • Itokawa T.
        • Yamamoto T.
        • Motomura G.
        • Ohishi M.
        • Hamai S.
        • Iwamoto Y.
        Combined anteversion technique reduced the dislocation in cementless total hip arthroplasty.
        Int. Orthop. 2014; 38: 27-32https://doi.org/10.1007/s00264-013-2091-2
        • Ogawa T.
        • Takao M.
        • Sakai T.
        • Sugano N.
        Factors related to disagreement in implant size between preoperative CT-based planning and the actual implants used intraoperatively for total hip arthroplasty.
        Int. J. Comput. Assist. Radiol. Surg. 2018; 13: 551-562https://doi.org/10.1007/s11548-017-1693-3
        • Park K.K.
        • Tsai T.Y.
        • Dimitriou D.
        • Kwon Y.M.
        Utility of preoperative femoral neck geometry in predicting femoral stem anteversion.
        J. Arthroplast. 2015; 30: 1079-1084https://doi.org/10.1016/j.arth.2015.01.016
        • Paterson N.R.
        • Teeter M.G.
        • MacDonald S.J.
        • McCalden R.W.
        • Howard J.L.
        • Naudie D.D.R.
        Highly cross-linked vs conventional polyethylene: no differences in rim notching from micromotion on retrieved acetabular liners.
        J. Arthroplast. 2012; 27: 1616-1621.e1https://doi.org/10.1016/j.arth.2012.03.034
        • Rhee S.J.
        • Kim H.J.
        • Lee C.R.
        • Kim C.W.
        • Gwak H.C.
        • Kim J.H.
        A comparison of long-term outcomes of computer-navigated and conventional Total knee arthroplasty: a Meta-analysis of randomized controlled trials.
        J. Bone Jt. Surg. - Am. 2019; 101: 1875-1885https://doi.org/10.2106/JBJS.19.00257
        • Sadhu A.
        • Nam D.
        • Coobs B.R.
        • Barrack T.N.
        • Nunley R.M.
        • Barrack R.L.
        Acetabular component position and the risk of dislocation following primary and revision total hip arthroplasty: a matched cohort analysis.
        J. Arthroplast. 2017; 32: 987-991https://doi.org/10.1016/j.arth.2016.08.008
        • Saiz A.M.
        • Lum Z.C.
        • Pereira G.C.
        Etiology, evaluation, and management of dislocation after primary total hip arthroplasty.
        JBJS Rev. 2019; 7: 1-11https://doi.org/10.2106/JBJS.RVW.18.00165
        • Sariali E.
        • Mouttet A.
        • Pasquier G.
        • Durante E.
        • Catone Y.
        Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck.
        J. Bone Jt. Surg. - Ser. B. 2009; 91: 333-340https://doi.org/10.1302/0301-620X.91B3.21390
        • Shiomoto K.
        • Hamai S.
        • Hara D.
        • Higaki H.
        • Gondo H.
        • Wang Y.
        • Ikebe S.
        • Yoshimoto K.
        • Komiyama K.
        • Harada S.
        • Nakashima Y.
        In vivo kinematics, component alignment and hardware variables influence on the liner-to-neck clearance during chair-rising after total hip arthroplasty.
        J. Orthop. Sci. 2019; https://doi.org/10.1016/j.jos.2019.05.012
        • Shiomoto K.
        • Hamai S.
        • Motomura G.
        • Ikemura S.
        • Fujii M.
        • Nakashima Y.
        Influencing factors for joint perception after Total hip arthroplasty: Asian cohort study.
        J. Arthroplast. 2020; 35: 1307-1314https://doi.org/10.1016/j.arth.2019.12.039
        • Shiomoto K.
        • Hamai S.
        • Ikebe S.
        • Higaki H.
        • Hara D.
        • Gondo H.
        • Komiyama K.
        • Yoshimoto K.
        • Harada S.
        • Nakashima Y.
        Computer simulation based on in vivo kinematics of a replaced hip during chair-rising for elucidating target cup and stem positioning with a safety range of hip rotation.
        Clin. Biomech. 2021; 20105537https://doi.org/10.1016/j.clinbiomech.2021.105537
        • Shoji T.
        • Ota Y.
        • Saka H.
        • Murakami H.
        • Takahashi W.
        • Yamasaki T.
        • Yasunaga Y.
        • Iwamori H.
        • Adachi N.
        Factors affecting impingement and dislocation after total hip arthroplasty – computer simulation analysis.
        Clin. Biomech. 2020; 80105151https://doi.org/10.1016/j.clinbiomech.2020.105151
        • Skyttä E.T.
        • Jarkko L.
        • Antti E.
        • Huhtala H.
        • Ville R.
        Increasing incidence of hip arthroplasty for primary osteoarthritis in 30-to 59-year-old patients: a population based study from the finnish arthroplasty register.
        Acta Orthop. 2011; 82: 1-5https://doi.org/10.3109/17453674.2010.548029
        • Sugano N.
        • Tsuda K.
        • Miki H.
        • Takao M.
        • Suzuki N.
        • Nakamura N.
        Dynamic measurements of hip movement in deep bending activities after total hip arthroplasty using a 4-dimensional motion analysis system.
        J. Arthroplast. 2012; 27: 1562-1568https://doi.org/10.1016/j.arth.2012.01.029
        • Tabata T.
        • Kaku N.
        • Tagomori H.
        • Tsumura H.
        Influence of hip center position, anterior inferior iliac spine morphology, and ball head diameter on range of motion in total hip arthroplasty.
        Orthop. Traumatol. Surg. Res. 2019; 105: 23-28https://doi.org/10.1016/j.otsr.2018.09.021
        • Tanaka T.
        • Takao M.
        • Sakai T.
        • Hamada H.
        • Tanaka S.
        • Sugano N.
        Variations in sagittal and coronal stem tilt and their impact on prosthetic impingement in total hip arthroplasty.
        Artif. Organs. 2019; 43: 569-576https://doi.org/10.1111/aor.13388
        • Tiberi J.V.
        • Antoci V.
        • Malchau H.
        • Rubash H.E.
        • Freiberg A.A.
        • Kwon Y.M.
        What is the fate of total hip arthroplasty (THA) acetabular component orientation when evaluated in the standing position?.
        J. Arthroplast. 2015; 30: 1555-1560https://doi.org/10.1016/j.arth.2015.03.025
        • Viceconti M.
        • Lattanzi R.
        • Antonietti B.
        • Paderni S.
        • Olmi R.
        • Sudanese A.
        • Toni A.
        CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning.
        Med. Eng. Phys. 2003; 25: 371-377https://doi.org/10.1016/S1350-4533(03)00018-3
        • Vigdorchik J.M.
        • Sharma A.K.
        • Madurawe C.S.
        • Elbuluk A.M.
        • Baré J.V.
        • Pierrepont J.W.
        Does prosthetic or bony impingement occur more often in total hip arthroplasty: a dynamic preoperative analysis.
        J. Arthroplast. 2020; 35: 2501-2506https://doi.org/10.1016/j.arth.2020.05.009
        • Vu-Han T.
        • Hardt S.
        • Ascherl R.
        • Gwinner C.
        • Perka C.
        Recommendations for return to sports after total hip arthroplasty are becoming less restrictive as implants improve.
        Arch. Orthop. Trauma Surg. 2021; 141: 497-507https://doi.org/10.1007/s00402-020-03691-1
        • Widmer K.H.
        • Zurfluh B.
        Compliant positioning of total hip components for optimal range of motion.
        J. Orthop. Res. 2004; 22: 815-821https://doi.org/10.1016/j.orthres.2003.11.001
        • Won Y.S.
        • Baldini T.
        • Peterson M.G.
        • Wright T.M.
        • Salvati E.A.
        Impingement in total hip arthroplasty: a study of retrieved acetabular components.
        J. Arthroplast. 2005; 20: 427-435https://doi.org/10.1016/j.arth.2004.09.058
        • Wu G.
        ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine.
        Int. Soc. Biomech. J. Biomech. 2002; 35: 543-548https://doi.org/10.1016/s0021-9290(01)00222-6