Advertisement

Cervical spine injury response to direct rear head impact

  • Marie-Hélène Beauséjour
    Affiliations
    Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, Quebec, Canada

    Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin, H4J 1C5, Montreal, Quebec, Canada

    International Laboratory on Spine Imaging and Biomechanics, France and Canada

    Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel, Aix-Marseille Université, UMR T24, 51 boulevard Pierre Dramard, 13015 Marseille, France
    Search for articles by this author
  • Yvan Petit
    Correspondence
    Corresponding author at: 1100 Notre-Dame Street West, H3C 1K3, Montreal, Quebec, Canada.
    Affiliations
    Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, Quebec, Canada

    Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin, H4J 1C5, Montreal, Quebec, Canada

    International Laboratory on Spine Imaging and Biomechanics, France and Canada
    Search for articles by this author
  • Éric Wagnac
    Affiliations
    Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, Quebec, Canada

    Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin, H4J 1C5, Montreal, Quebec, Canada

    International Laboratory on Spine Imaging and Biomechanics, France and Canada
    Search for articles by this author
  • Anthony Melot
    Affiliations
    International Laboratory on Spine Imaging and Biomechanics, France and Canada

    Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel, Aix-Marseille Université, UMR T24, 51 boulevard Pierre Dramard, 13015 Marseille, France

    Hôpital privé Clairval, 317 boulevard du Redon, 13009 Marseille, France
    Search for articles by this author
  • Lucas Troude
    Affiliations
    Neurosurgery, CHU Nord Marseille, Chemin des Bourrely, cedex 20, 13015 Marseille, France
    Search for articles by this author
  • Pierre-Jean Arnoux
    Affiliations
    International Laboratory on Spine Imaging and Biomechanics, France and Canada

    Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel, Aix-Marseille Université, UMR T24, 51 boulevard Pierre Dramard, 13015 Marseille, France
    Search for articles by this author

      Highlights

      • A novel protocol was created to apply dynamic rear head impact on human cadavers.
      • Neck anterior shear and compression loading leads to flexion-distraction injuries.
      • Anterior vertebral osteophytes provide stability in flexion to the cervical spine.
      • Osteophytes seem to influence the type and location of injuries at the cervical spine.

      Abstract

      Background

      Direct rear head impact can occur during falls, road accidents, or sports accidents. They induce anterior shear, flexion and compression loads suspected to cause flexion-distraction injuries at the cervical spine. However, post-mortem human subject experiments mostly focus on sled impacts and not direct head impacts.

      Methods

      Six male cadavers were subjected to a direct rear head impact of 3.5 to 5.5 m/s with a 40 kg impactor. The subjects were equipped with accelerometers at the forehead, mouth and sternum. High-speed cameras and stereography were used to track head displacements. Head range of motion in flexion-extension was measured before and after impact for four cadavers. The injuries were assessed from CT scan images and dissection.

      Findings

      Maximum head rotation was between 43 degrees and 78 degrees, maximum cranial-caudal displacement between −12 mm and − 196 mm, and antero-posterior displacement between 90 mm and 139 mm during the impact. Four subjects had flexion-distraction injuries. Anterior vertebral osteophyte identification showed that fractures occurred at adjacent levels of osteophytic bridges. The other two subjects had no anterior osteophytes and suffered from C2 fracture, and one subject also had a C1-C2 subluxation. C6-C7 was the most frequently injured spinal level.

      Interpretation

      Anterior vertebral osteophytes appear to influence the type and position of injuries. Osteophytes would seem to provide stability in flexion for the osteoarthritic cervical spine, but to also lead to stress concentration in levels adjacent to the osteophytes. Clinical management of patients presenting with osteophytes fracture should include neck immobilization and careful follow-up to ensure bone healing.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Al-Rawahi Maimouna
        • Luo Jin
        • Pollintine Phillip
        • Dolan Patricia
        • Adams Michael A.
        Mechanical function of vertebral body osteophytes, as revealed by experiments on cadaveric spines.
        Spine. 2011; 36: 770-777
        • Althoff B.
        • Bardholm P.
        Fracture of the odontoid process. A clinical and radiographic study.
        Acta Orthop. Scand. Suppl. 1979; 177: 61-95
        • Bailly Nicolas
        • Llari Maxime
        • Donnadieu Thierry
        • Masson Catherine
        • Arnoux Pierre-Jean
        Numerical reconstruction of traumatic brain injury in skiing and snowboarding.
        Med. Sci. Sports Exerc. 2018; 50: 2322-2329
        • Barrey C.Y.
        • di Bartolomeo A.
        • Barresi L.
        • Bronsard N.
        • Allia J.
        • Blondel B.
        • Fuentes S.
        • et al.
        C1-C2 injury: factors influencing mortality, outcome, and fracture healing.
        Eur. Spine J. 2021; https://doi.org/10.1007/s00586-021-06763-x
        • Bilston Lynne E.
        • Clarke Elizabeth C.
        • Brown Julie
        Spinal injury in car crashes: crash factors and the effects of occupant age.
        Injury Prevent. 2011; 17: 228-232
        • Blauth M.K.A.
        • Mair G.
        • Schmid R.
        • Reinhold M.
        • Rieger M.
        Classification of injuries of the subaxial cervical spine.
        in: AO Spine Manual: Clinical Applications. Thieme, Stuttgart. 2007: 21-38
        • Bourdet Nicolas
        • Deck Caroline
        • Serre Thierry
        • Perrin Christophe
        • Llari Maxime
        • Willinger Rémy
        In-depth real-world bicycle accident reconstructions.
        Int. J. Crashworth. 2014; 19: 222-232
        • Davis Matthew L.
        • Vavalle Nicholas A.
        • Gayzik F. Scott
        An Evaluation of Mass-Normalization Using 50th and 95th Percentile Human Body Finite Element Models in Frontal Crash.
        2015: 608-621
        • De Leva Paolo
        Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters.
        J. Biomech. 1996; 29: 1223-1230
        • Dennison Christopher R.
        • Macri Erin M.
        • Cripton Peter A.
        Mechanisms of Cervical Spine Injury in Rugby union: Is It Premature to Abandon Hyperflexion as the Main Mechanism Underpinning Injury?.
        2012
        • Divi Srikanth N.
        • Schroeder Gregory D.
        • Cumhur Oner F.
        • Kandziora Frank
        • Schnake Klaus J.
        • Dvorak Marcel F.
        • Benneker Lorin M.
        • Chapman Jens R.
        • Vaccaro Alexander R.
        AOSpine—spine trauma classification system: the value of modifiers: A narrative review with commentary on evolving descriptive principles.
        Global Spine J. 2019; 9: 77S-88S
        • Ebraheim Nabil A.
        • Patil Vishwas
        • Liu Jiayong
        • Haman Steve P.
        • Yeasting Richard A.
        Morphometric analyses of the cervical superior facets and implications for facet dislocation.
        Int. Orthop. 2008; 32: 97-101
        • Goodarzi Nader
        • Akbari Ghasem
        • Tehrani Payam Razeghi
        Zinc chloride, a new material for embalming and preservation of the anatomical specimens.
        Anatom. Sci. J. 2017; 14: 25-30
        • Healy Andrew T.
        • Mageswaran Prasath
        • Lubelski Daniel
        • Rosenbaum Benjamin P.
        • Matheus Virgilio
        • Benzel Edward C.
        • Mroz Thomas E.
        Thoracic range of motion, stability, and correlation to imaging-determined degeneration.
        J. Neurosurg. Spine. 2015; 23: 170-177
        • Islam Samantha
        • Mannering Fred
        Driver aging and its effect on male and female single-vehicle accident injuries: some additional evidence.
        J. Saf. Res. 2006; 37: 267-276https://doi.org/10.1016/j.jsr.2006.04.003
        • Ivancic Paul C.
        Head-first impact with head protrusion causes noncontiguous injuries of the cadaveric cervical spine.
        Clin. J. Sport Med. 2012; 22
        • Ivancic Paul C.
        Odontoid fracture biomechanics.
        Spine. 2014; 39: E1403-E1410
        • Izzo Roberto
        • Popolizio Teresa
        • Balzano Rosario Francesco
        • Pennelli Anna Maria
        • Simeone Anna
        • Muto Mario
        Imaging of cervical spine traumas.
        Eur. J. Radiol. 2019; 117: 88
        • King Albert I.
        The Biomechanics of Impact Injury.
        Springer, 2018
        • Kuhlman Kurt A.
        Cervical range of motion in the elderly.
        Arch. Phys. Med. Rehabil. 1993; 74: 1071-1079
        • Kuo Calvin
        • Sheffels Jodie
        • Fanton Michael
        • Ina Bianca Yu
        • Hamalainen Rosa
        • Camarillo David
        Passive cervical spine ligaments provide stability during head impacts.
        J. R. Soc. Interface. 2019; 16: 20190086
        • Lecoublet Brieg
        • Boisclair Dominic
        • Evin Morgane
        • Wagnac Eric
        • Petit Yvan
        • Aubin Carl-Eric
        • Arnoux Pierre-Jean
        Assessing the global range of motion of the helmeted head through rotational and translational measurements.
        Int. J. Crashworth. 2020; 25: 427-432
        • Linder Astrid
        • Svedberg Wanna
        Review of average sized male and female occupant models in European regulatory safety assessment tests and European laws: gaps and bridging suggestions.
        Accid. Anal. Prev. 2019; 127: 156-162
        • Maiman Dennis J.
        • Yoganandan Narayan
        • Pintar Frank A.
        Preinjury cervical alignment affecting spinal trauma.
        J. Neurosurg. Spine. 2002; 97
        • Mattucci Stephen
        • Speidel Jason
        • Liu Jie
        • Kwon Brian K.
        • Tetzlaff Wolfram
        • Oxland Thomas R.
        Basic biomechanics of spinal cord injury—how injuries happen in people and how animal models have informed our understanding.
        Clin. Biomech. 2019; 64: 58-68
        • Meyer Frank
        • Humm John
        • Purushothaman Yuvaraj
        • Willinger Rémy
        • Pintar Frank A.
        • Yoganandan Narayan
        Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests.
        J. Mech. Behav. Biomed. Mater. 2019; 90: 681-688
        • Molinero A.
        Motorcyclists Road Safety Improvement through Better Performance of the Protective Equipment and First Aid Devices.
        2013
        • Niewiadomski Céline
        • Bianco Rohan-Jean
        • Afquir Sanae
        • Evin Morgane
        • Arnoux Pierre-Jean
        Experimental assessment of cervical ranges of motion and compensatory strategies.
        Chiropract. Manual Therap. 2019; 27: 9
        • Nightingale Roger W.
        • McElhaney James H.
        • Richardson William J.
        • Best Thomas M.
        • Myers Barry S.
        Experimental impact injury to the cervical spine: relating motion of the head and the mechanism of injury.
        JBJS. 1996; 78: 412-421
        • Nightingale Roger W.
        • Winkelstein Beth A.
        • Knaub Kurt E.
        • Richardson William J.
        • Luck Jason F.
        • Myers Barry S.
        Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension.
        J. Biomech. 2002; 35: 725-732
        • Nightingale Roger W.
        • Carol Chancey V.
        • Ottaviano Danielle
        • Luck Jason F.
        • Tran Laura
        • Prange Michael
        • Myers Barry S.
        Flexion and extension structural properties and strengths for male cervical spine segments.
        J. Biomech. 2007; 40: 535-542
        • Nightingale Roger W.
        • Bass Cameron R.
        • Myers Barry S.
        On the relative importance of bending and compression in cervical spine bilateral facet dislocation.
        Clin. Biomech. 2019; 64: 90-97
        • Pintar Frank A.
        • Anthony Sances
        • Yoganandan Narayan
        • Reinartz John
        • Maiman Dennis J.
        • Suh Jung Keun
        • Unger George
        • Cusick Joseph F.
        • Larson Sanford J.
        Biodynamics of the total human cadaveric cervical spine.
        in: SAE International.1990https://doi.org/10.4271/902309
        • Pintar Frank A.
        • Voo L.M.
        • Yoganandan Narayan A.
        • Cho T.H.
        • Maiman D.J.
        Mechanisms of Hyperflexion Cervical Spine Injury.
        Proceedings of the International Research Council on the Biomechanics of Injury Conference. 1998; 26: 249-260
        • Pintar Frank A.
        • Yoganandan Narayan
        • Maiman Dennis J.
        Lower Cervical Spine Loading in Frontal Sled Tests Using Inverse Dynamics: Potential Applications for Lower Neck Injury Criteria.
        The Stapp Association, 2010https://doi.org/10.4271/2010-22-0008
        • Quarrington Ryan D.
        • Jones Claire F.
        • Tcherveniakov Petar
        • Clark Jillian M.
        • Sandler Simon J.I.
        • Lee Yu Chao
        • Torabiardakani Shabnam
        • Costi John J.
        • Freeman Brian J.C.
        Traumatic subaxial cervical facet subluxation and dislocation: epidemiology, radiographic analyses, and risk factors for spinal cord injury.
        Spine J. 2018; 18: 387-398
        • Saari A.
        • Itshayek E.
        • Cripton Peter A.
        Cervical spinal cord deformation during simulated head-first impact injuries.
        J. Biomech. 2011; 44: 2565-2571
        • Sasaki Manabu
        • Asamoto Shunji
        • Umegaki Masao
        • Matsumoto Katsumi
        Cervical osteogenic degeneration in Japanese professional wrestlers and its relationship to cervical spine injury.
        J. Neurosurg. Spine. 2018; 29: 622-627
        • Schmitt Kai-Uwe
        • Niederer Peter F.
        • Cronin Duane S.
        • Barclay Morrison I.I.I.
        • Muser Markus H.
        • Walz Felix
        Trauma Biomechanics: an Introduction to Injury Biomechanics.
        Springer, 2019
        • Siegmund Gunter P.
        • King David J.
        • Lawrence Jonathan M.
        • Wheeler Jeffrey B.
        • Brault John R.
        • Smith Terry A.
        Head/neck kinematic response of human subjects in low-speed rear-end collisions.
        SAE Trans. 1997; : 3877-3905
        • Stemper Brian D.
        • Yoganandan Narayan
        • Pintar Frank A.
        Gender dependent cervical spine segmental kinematics during whiplash.
        J. Biomech. 2003; 36: 1281-1289
        • Tadros Allison
        • Sharon Melinda
        • Craig Kristen
        • Krantz William
        Characteristics and management of emergency department patients presenting with C2 cervical spine fractures.
        in: Rodgers William B. BioMed Research International 2019 (May): 4301051. 2019https://doi.org/10.1155/2019/4301051
        • Thompson J.P.
        • Pearce R.H.
        • Schechter M.T.
        • Adams M.E.
        • Tsang I.K.Y.
        • Bishop P.B.
        Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc.
        Spine. 1990; 15: 411-415
        • Vaccaro Alexander R.
        • Koerner John D.
        • Radcliff Kris E.
        • Cumhur Oner F.
        • Reinhold Maximilian
        • Schnake Klaus J.
        • Kandziora Frank
        • Fehlings Michael G.
        • Dvorak Marcel F.
        • Aarabi Bizhan
        AOSpine subaxial cervical spine injury classification system.
        Eur. Spine J. 2016; 25: 2173-2184
        • Viano David C.
        • Parenteau Chantal S.
        Analysis of head impacts causing neck compression injury.
        Traffic Injury Prevent. 2008; 9: 144-152https://doi.org/10.1080/15389580801894940
        • Wagnac Eric
        • Aubin Carl-Éric
        • Chaumoître Kathia
        • Mac-Thiong Jean-Marc
        • Ménard Anne-Laure
        • Petit Yvan
        • Garo Anaïs
        • Arnoux Pierre-Jean
        Substantial vertebral body osteophytes protect against severe vertebral fractures in compression.
        PLoS One. 2017; 12e0186779
        • Wagnac Eric
        • Mac-Thiong Jean-Marc
        • Arnoux Pierre-Jean
        • Desrosiers Jean-Michel
        • Ménard Anne-Laure
        • Petit Yvan
        Traumatic spinal cord injuries with fractures in a Québec level I trauma center.
        Can. J. Neurol. Sci. 2019; 46: 727-734
        • White Nicholas A.
        • Begeman Paul C.
        • Hardy Warren N.
        • Yang King H.
        • Ono Koshiro
        • Sato Fusako
        • Kamiji Koichi
        • Yasuki Tsuyoshi
        • Bey Michael J.
        Investigation of upper body and cervical spine kinematics of post mortem human subjects (PMHS) during low-speed, rear-end impacts.
        in: SAE International. 2009https://doi.org/10.4271/2009-01-0387
        • Yin Sha
        • Li Jiani
        • Jun Xu.
        Exploring the mechanisms of vehicle front-end shape on pedestrian head injuries caused by ground impact.
        Accid. Anal. Prev. 2017; 106: 285-296
        • Yoganandan Narayan A.
        • Pintar Frank A.
        • Stemper Brian D.
        • Schlick M.B.
        • Philippens Mathieu M.G.M.
        • Wismans Jac
        Biomechanics of human occupants in simulated rear crashes: documentation of neck injuries and comparison of injury criteria.
        Stapp Car Crash J. 2000; 44: 189-204
        • Yoganandan Narayan
        • Bass Cameron R.
        • Voo Liming
        • Pintar Frank A.
        Male and female cervical spine biomechanics and anatomy: implication for scaling injury criteria.
        J. Biomech. Eng. 2017; 139
        • Yukawa Yasutsugu
        • Kato Fumihiko
        • Suda Kota
        • Yamagata Masatsune
        • Ueta Takayoshi
        Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: radiographic data from over 1,200 asymptomatic subjects.
        Eur. Spine J. 2012; 21: 1492-1498