Impact of dribbling on spatiotemporal and kinetic parameters in wheelchair basketball athletes

  • Author Footnotes
    1 Postal address: Félix Chénier Biological Sciences Building, Office SB-4455 Université du Québec à Montréal P.O. Box 8888, Centreville Montreal, Quebec H3C 3P8 Canada
    Félix Chénier
    Correspondence
    Corresponding author at: Université du Québec à Montréal, Faculty of Sciences, Department of Physical Activity Sciences, Montreal, Canada.
    Footnotes
    1 Postal address: Félix Chénier Biological Sciences Building, Office SB-4455 Université du Québec à Montréal P.O. Box 8888, Centreville Montreal, Quebec H3C 3P8 Canada
    Affiliations
    Université du Québec à Montréal, Faculty of Sciences, Department of Physical Activity Sciences, Montreal, Canada

    Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, Canada
    Search for articles by this author
  • Ilona Alberca
    Affiliations
    Université de Toulon, Impact de l'Activité Physique sur la Santé (UR IAPS n°201723207F), Campus de La Garde, CS60584, F-83041 Toulon, France
    Search for articles by this author
  • Etienne Marquis
    Affiliations
    Université du Québec à Montréal, Faculty of Sciences, Department of Physical Activity Sciences, Montreal, Canada

    Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, Canada
    Search for articles by this author
  • Dany H. Gagnon
    Affiliations
    Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, Canada

    Université de Montréal, Faculty of Medicine, School of Rehabilitation, Montreal, Canada
    Search for articles by this author
  • Arnaud Faupin
    Affiliations
    Université de Toulon, Impact de l'Activité Physique sur la Santé (UR IAPS n°201723207F), Campus de La Garde, CS60584, F-83041 Toulon, France
    Search for articles by this author
  • Author Footnotes
    1 Postal address: Félix Chénier Biological Sciences Building, Office SB-4455 Université du Québec à Montréal P.O. Box 8888, Centreville Montreal, Quebec H3C 3P8 Canada

      Highlights

      • This study measured biomechanics of dribbling in wheelchair basketball.
      • Ten experienced athletes sprinted using classic and dribble propulsion.
      • Dribbling decreased velocity and propulsion moments, indicating a submaximal task.
      • Dribbling was not associated with any musculoskeletal disorder-related factors.

      Abstract

      Background

      Wheelchair basketball is one of the most popular Paralympic sports. Dribbling a ball while propelling is a key feature of wheelchair basketball. Very few studies have investigated the biomechanical impact of dribbling. This study aims to analyze the impact of dribbling on the amplitude and symmetry of spatiotemporal and kinetic parameters of wheelchair propulsion.

      Methods

      Ten experienced wheelchair basketball athletes (31.5 ± 10.6 years old; 7 men, 3 women) with various classifications performed eight 9-m sprints along a straight line on a basketball court: four sprints using classic synchronous propulsion, and four sprints while dribbling a ball down the court.

      Findings

      Dribbling decreased velocity, mean propulsive moments and the force rate of rise, as well as increased push time, force rate of rise asymmetry and angular impulse asymmetry. All kinetic variables were asymmetric and higher on the dominant limb.

      Interpretation

      The combination of reduced velocity and propulsive moments when dribbling indicates that wheelchair basketball athletes may deliberately preserve a safety margin of acceleration to adapt to uncontrolled ball rebounds. Dribbling was not associated with any factors associated with an increased risk of musculoskeletal disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akbar M.
        • Brunner M.
        • Ewerbeck V.
        • Wiedenhöfer B.
        • Grieser T.
        • Bruckner T.
        • Loew M.
        • Raiss P.
        Do overhead sports increase risk for rotator cuff tears in wheelchair users?.
        Arch. Phys. Med. Rehabil. 2015; 96: 484-488https://doi.org/10.1016/j.apmr.2014.09.032
        • Akbar M.
        • Brunner M.
        • Ewerbeck V.
        • Wiedenhöfer B.
        • Grieser T.
        • Bruckner T.
        • Loew M.
        • Raiss P.
        Do overhead sports increase risk for rotator cuff tears in wheelchair users?.
        Arch. Phys. Med. Rehabil. 2015; 96: 484-488https://doi.org/10.1016/j.apmr.2014.09.032
        • Bergamini E.
        • Morelli F.
        • Marchetti F.
        • Vannozzi G.
        • Polidori L.
        • Paradisi F.
        • Traballesi M.
        • Cappozzo A.
        • Delussu A.S.
        Wheelchair propulsion biomechanics in junior basketball players: a method for the evaluation of the efficacy of a specific training program.
        Biomed. Res. Int. 2015; 2015: 1-10https://doi.org/10.1155/2015/275965
        • Boninger M.L.
        • Baldwin M.
        • Cooper R.A.
        • Koontz A.
        • Chan L.
        Manual wheelchair pushrim biomechanics and axle position.
        Arch. Phys. Med. Rehabil. 2000; 81: 608-613
        • Boninger M.L.
        • Koontz A.M.
        • Sisto S.A.
        • Dyson-Hudson T.A.
        • Chang M.
        • Price R.
        • Cooper R.A.
        Pushrim biomechanics and injury prevention in spinal cord injury: recommendations based on CULP-SCI investigations.
        J. Rehabilitat. Res. Dev. 2005; 42: 9https://doi.org/10.1682/JRRD.2004.08.0103
        • Cavedon V.
        • Zancanaro C.
        • Milanese C.
        Kinematic analysis of the wheelchair tennis serve: implications for classification.
        Scand. J. Med. Sci. Sports. 2014; 24: e381-e388https://doi.org/10.1111/sms.12182
        • Chénier F.
        Kinetics toolkit: An open-source Python package to facilitate research in biomechanics.
        J. Open Source Software. 2021; 6: 3714https://doi.org/10.21105/joss.03714
        • Chénier F.
        • Bigras P.
        • Aissaoui R.
        A new dynamic model of the wheelchair propulsion on straight and curvilinear level-ground paths.
        Comput. Methods Biomech. Biomed. Eng. 2015; 18: 1031-1043
        • Chénier F.
        • Aissaoui R.
        • Gauthier C.
        • Gagnon D.H.
        Wheelchair pushrim kinetics measurement: a method to cancel inaccuracies due to pushrim weight and wheel camber.
        Med. Eng. Phys. 2017; 40: 75-86https://doi.org/10.1016/j.medengphy.2016.12.002
        • Cohen J.
        Statistical Power Analysis for the Behavioral Sciences.
        2nd ed. L. Erlbaum Associates, Hillsdale, N.J1988
        • Consortium for Spinal Cord Medicine
        Preservation of upper limb function following spinal cord injury: a clinical practice guideline for health-care professionals.
        J. Spinal Cord Med. 2005; 28: 434-470
        • Costa R.
        • Molik B.
        • Lachance A.
        • Krige L.
        • Allouche T.
        • Mehrens U.
        • Kucera N.
        International Wheelchair Basketball Federation (IWBF) Official Player Classification Manual.
        2018
        • Curtis K.A.
        • Black K.
        Shoulder pain in female wheelchair basketball players.
        J. Orthop. Sports Phys. Ther. 1999; 29: 225-231https://doi.org/10.2519/jospt.1999.29.4.225
        • Curtis K.A.
        • Dillon D.A.
        Survey of wheelchair athletic injuries: common patterns and prevention.
        Spinal Cord. 1985; 23: 170-175https://doi.org/10.1038/sc.1985.29
        • Curtis K.A.
        • Dillon D.A.
        Survey of wheelchair athletic injuries: common patterns and prevention.
        Spinal Cord. 1985; 23: 170-175https://doi.org/10.1038/sc.1985.29
        • de Witte A.M.H.
        • Hoozemans M.J.M.
        • Berger M.A.M.
        • van der Woude L.H.V.
        • Veeger D.H.E.J.
        Do field position and playing standard influence athlete performance in wheelchair basketball?.
        J. Sports Sci. 2016; 34: 811-820https://doi.org/10.1080/02640414.2015.1072641
        • de Witte A.M.H.
        • Berger M.A.M.
        • Hoozemans M.J.M.
        • Veeger D.H.E.J.
        • van der Woude L.H.V.
        Effects of offense, defense, and ball possession on mobility performance in wheelchair basketball.
        Adapt. Phys. Act. Q. 2017; 34: 382-400https://doi.org/10.1123/apaq.2016-0125
        • Desroches G.
        • Dumas R.
        • Pradon D.
        • Vaslin P.
        • Lepoutre F.-X.
        • Chèze L.
        Upper limb joint dynamics during manual wheelchair propulsion.
        Clin. Biomech. 2010; 25: 299-306
        • Faupin A.
        • Borel B.
        • Meyer C.
        • Gorce P.
        • Watelain E.
        Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.
        Disab. Rehabilitat. Assistive Technol. 2013; 8: 496-501https://doi.org/10.3109/17483107.2012.756947
        • Gagnon D.
        • Verrier M.
        • Masani K.
        • Nadeau S.
        • Aissaoui R.
        • Popovic M.
        Effects of trunk impairments on manual wheelchair propulsion among individuals with a spinal cord injury: a brief overview and future challenges.
        Top. Spinal Cord Injury Rehabilitat. 2009; 15: 59-70https://doi.org/10.1310/sci1502-59
        • Hurd W.J.
        • Morrow M.M.
        • Kaufman K.R.
        • An K.-N.
        Biomechanic evaluation of upper-extremity symmetry during manual wheelchair propulsion over varied terrain.
        Arch. Phys. Med. Rehabil. 2008; 89: 1996-2002https://doi.org/10.1016/j.apmr.2008.03.020
        • Iturricastillo A.
        • Granados C.
        • Yanci J.
        Changes in body composition and physical performance in wheelchair basketball players during a competitive season.
        J. Human Kinet. 2015; 48: 157-165https://doi.org/10.1515/hukin-2015-0102
        • JASP Team
        JASP (Version 0.14)[Computer software].
        2020
        • Koontz A.M.
        • Cooper R.A.
        • Boninger M.L.
        • Yang Y.
        • Impink B.G.
        • van der Woude L.H.V.
        A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces.
        J. Rehabil. Res. Dev. 2005; 42: 447-458https://doi.org/10.1682/JRRD.2004.08.0106
        • Kozomara G.
        • Petrovic P.
        • Nikolic G.
        • Jorgic B.
        • Kocic M.
        • Aleksandrovic M.
        The effects of preparation period on motor skills of wheelchair basketball players: a pilot study.
        J. Anthr. Sport Phis. Educ. 2019; 3: 11-14https://doi.org/10.26773/jaspe.191003
        • Kulig K.
        • Newsam C.J.
        • Mulroy S.J.
        • Rao S.
        • Gronley J.K.
        • Bontrager E.L.
        • Perry J.
        The effect of level of spinal cord injury on shoulder joint kinetics during manual wheelchair propulsion.
        Clin. Biomech. 2001; 8
        • Lepera C.
        The prevalance of shoulder pain in professional male wheelchair basketball players in Gauteng, South Africa (Master thesis).
        University of the Witwatersrand, Johannesburg2010
        • Marquis E.
        • Gagnon D.H.
        • Faupin A.
        • Chénier F.
        Effets du mouvement du tronc et des membres supérieurs sur le changement directionnel du fauteuil roulant lors d’un évitement d’obstacle.
        in: Neurophysiologie Clinique. 2019: 415https://doi.org/10.1016/j.neucli.2019.10.027
        • Molik B.
        • Kosmol A.
        • Morgulec-Adamowicz N.
        • Lencse-Mucha J.
        • Mróz A.
        • Gryko K.
        • Marszałek J.
        Comparison of aerobic performance testing protocols in elite male wheelchair basketball players.
        J. Human Kinet. 2017; 60: 243-254https://doi.org/10.1515/hukin-2017-0140
        • Nyland J.
        • Robinson K.
        • Caborn D.
        • Knapp E.
        • Brosky T.
        Shoulder rotator torque and wheelchair dependence differences of national wheelchair basketball association players.
        Arch. Phys. Med. Rehabil. 1997; 78: 358-363https://doi.org/10.1016/S0003-9993(97)90226-4
        • Price J.
        • Gill D.L.
        • Etnier J.
        • Kornatz K.
        Free-throw shooting during dual-task performance: implications for attentional demand and performance.
        Res. Q. Exerc. Sport. 2009; 80: 718-726https://doi.org/10.5641/027013609X13088509982441
        • Qi Liping
        • Wakeling J.
        • Grange S.
        • Ferguson-Pell M.
        Patterns of shoulder muscle coordination vary between wheelchair propulsion techniques.
        IEEE Trans. Neural Syst. Rehabil. Eng. 2014; 22: 559-566https://doi.org/10.1109/TNSRE.2013.2266136
        • Sawatzky B.J.
        • Kim W.O.
        • Denison I.
        The ergonomics of different tyres and Tyre pressure during wheelchair propulsion.
        Ergonomics. 2004; 47: 1475-1483https://doi.org/10.1080/00140130412331290862
        • Schnorenberg A.J.
        • Slavens B.A.
        • Wang M.
        • Vogel L.C.
        • Smith P.A.
        • Harris G.F.
        Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility.
        J. Biomech. 2014; 47: 269-276https://doi.org/10.1016/j.jbiomech.2013.11.014
        • Soltau S.L.
        • Slowik J.S.
        • Requejo P.S.
        • Mulroy S.J.
        • Neptune R.R.
        An investigation of bilateral symmetry during manual wheelchair propulsion.
        Front Bioeng Biotechnol. 2015; 3: 86https://doi.org/10.3389/fbioe.2015.00086
        • Sprigle S.
        • Huang M.
        • Lin J.-T.
        Inertial and frictional influences of instrumented wheelchair wheels.
        J. Rehabilitat. Assistive Technol. Eng. 2016; 3 (205566831664989)https://doi.org/10.1177/2055668316649892
        • Styles E.A.
        The Psychology of Attention.
        Taylor & Francis e-Library, London2005
        • Veeger T.T.J.
        • de Witte A.M.H.
        • Berger M.A.M.
        • van der Slikke R.M.A.
        • Veeger D.(.H.E.J.).
        • Hoozemans M.J.M.
        Improving mobility performance in wheelchair basketball.
        J. Sport Rehabil. 2019; 28: 59-66https://doi.org/10.1123/jsr.2017-0142
        • Wilroy J.
        • Hibberd E.
        Evaluation of a shoulder injury prevention program in wheelchair basketball.
        J. Sport Rehabil. 2018; 27: 554-559https://doi.org/10.1123/jsr.2017-0011