Experimental analysis of early periprosthetic femoral fractures with uncemented straight hip stems

      Highlights

      • Early periprosthetic femoral fractures were experimentally reproduced.
      • Measurement of displacements, strains, stresses, fracture loads and subsidence.
      • Two fundamentally different fracture mechanisms could be observed during stumbling.

      Abstract

      Background

      The periprosthetic femoral fracture is one of the most severe complications after total hip arthroplasty and is associated with an increased mortality. The underlying causes and the patient- and implant-specific risk factors of periprosthetic femoral fractures remain insufficiently understood. The aim of this study was to gain a more profound understanding of the underlying fracture mechanisms and to provide experimental datasets for validation of computational models.

      Methods

      Six cadaveric femurs were implanted with straight hip stems (Zweymueller design) and loaded until fracture reproducing the clinically relevant load cases stumbling and sideways fall. Displacements and the strain distribution on the surface of the femurs and implants, as well as the fracture load and implant subsidence were measured.

      Findings

      For the load case stumbling the mean fracture load was 6743 N and two different mechanisms leading to fracture could be identified: high subsidence with low femoral bending and small subsidence with high femoral bending. For the load case sideways fall the mean fracture load was 1757 N and both tested femurs fractured due to a rotation of the hip stem around its own axis. The detailed datasets provided by this study can be used in future computational models.

      Interpretation

      We demonstrated that the underlying fracture mechanisms of periprosthetic femoral fractures can be fundamentally different in the load case stumbling. The seating and exact position of the hip stem in the femur may correlate with implant subsidence and therefore lead to different types of fracture mechanisms resulting in different patient-specific fracture risks.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abdel M.P.
        • Watts C.D.
        • Houdek M.T.
        • Lewallen D.G.
        • Berry D.J.
        Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience.
        Bone Joint J. 2016; 98-B (461–7)https://doi.org/10.1302/0301-620X.98B4.37201
        • Abdel M.P.
        • Houdek M.T.
        • Watts C.D.
        • Lewallen D.G.
        • Berry D.J.
        Epidemiology of periprosthetic femoral fractures in 5417 revision total hip arthroplasties: a 40-year experience.
        Bone Joint J. 2016; 98-B: 468-474https://doi.org/10.1302/0301-620X.98B4.37203
        • Ali A.A.
        • Cristofolini L.
        • Schileo E.
        • Hu H.
        • Taddei F.
        • Kim R.H.
        • et al.
        Specimen-specific modeling of hip fracture pattern and repair.
        J. Biomech. 2014; 47: 536-543https://doi.org/10.1016/j.jbiomech.2013.10.033
        • Bergmann G.
        • Graichen F.
        • Rohlmann A.
        Hip joint contact forces during stumbling.
        Langenbeck’s Arch. Surg. 2004; 389: 53-59https://doi.org/10.1007/s00423-003-0434-y
        • Bieger R.
        • Ignatius A.
        • Decking R.
        • Claes L.
        • Reichel H.
        • Dürselen L.
        Primary stability and strain distribution of cementless hip stems as a function of implant design.
        Clin. Biomech. 2012; 27: 158-164https://doi.org/10.1016/j.clinbiomech.2011.08.004
        • Bissias C.
        • Kaspiris A.
        • Kalogeropoulos A.
        • Papoutsis K.
        • Natsioulas N.
        • Barbagiannis K.
        • et al.
        Factors affecting the incidence of postoperative periprosthetic fractures following primary and revision hip arthroplasty: a systematic review and meta-analysis.
        J. Orthop. Surg. Res. 2021; 16: 15https://doi.org/10.1186/s13018-020-02152-0
        • Busch V.J.J.F.
        • Pouw M.H.
        • Laumen A.M.R.P.
        • van Susante J.L.C.
        • Vervest A.M.J.S.
        Long-term outcome of 73 Zweymüller total hip prostheses with a screw cup in patients under 50 years of age.
        Hip Int. 2012; 22: 292-295https://doi.org/10.5301/HIP.2012.9239
        • Carli A.V.
        • Negus J.J.
        • Haddad F.S.
        Periprosthetic femoral fractures and trying to avoid them: what is the contribution of femoral component design to the increased risk of periprosthetic femoral fracture?.
        Bone Joint J. 2017; 99-B: 50-59https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0220.R1
        • Cruz-Pardos A.
        • García-Rey E.
        • García-Cimbrelo E.
        Total Hip Arthroplasty with use of the Cementless Zweymüller Alloclassic system.
        J. Bone Joint Surg. Am. 2017; 99: 1927-1931https://doi.org/10.2106/JBJS.16.01109
        • Davis E.T.
        • Olsen M.
        • Zdero R.
        • Smith G.M.
        • Waddell J.P.
        • Schemitsch E.H.
        Predictors of femoral neck fracture following hip resurfacing: a cadaveric study.
        J. Arthroplast. 2013; 28: 110-116https://doi.org/10.1016/j.arth.2012.05.015
        • Decking R.
        • Puhl W.
        • Simon U.
        • Claes L.E.
        Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems.
        Clin. Biomech. 2006; 21: 495-501https://doi.org/10.1016/j.clinbiomech.2005.12.011
        • Delaunay C.
        • Bonnomet F.
        • North J.
        • Jobard D.
        • Cazeau C.
        • Kempf J.F.
        Grit-blasted titanium femoral stem in cementless primary total hip arthroplasty: a 5- to 10-year multicenter study.
        J. Arthroplast. 2001; 16: 47-54https://doi.org/10.1054/arth.2001.17940
        • Dózsai D.
        • Ecseri T.
        • Csonka I.
        • Gárgyán I.
        • Doró P.
        • Csonka Á.
        Atypical periprosthetic femoral fracture associated with long-term bisphosphonate therapy.
        J. Orthop. Surg. Res. 2020; 15: 414https://doi.org/10.1186/s13018-020-01941-x
        • Duncan C.P.
        • Masri B.A.
        Fractures of the femur after hip replacement.
        Instr. Course Lect. 1995; 44: 293-304
        • Engelke K.
        • Libanati C.
        • Liu Y.
        • Wang H.
        • Austin M.
        • Fuerst T.
        • et al.
        Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA).
        Bone. 2009; 45: 110-118https://doi.org/10.1016/j.bone.2009.03.669
        • Enns-Bray W.S.
        • Owoc J.S.
        • Nishiyama K.K.
        • Boyd S.K.
        Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.
        J. Biomech. 2014; 47: 3272-3278https://doi.org/10.1016/j.jbiomech.2014.08.020
        • Ginsel B.L.
        • Morishima T.
        • Wilson L.J.
        • Whitehouse S.L.
        • Crawford R.W.
        Can larger-bodied cemented femoral components reduce periprosthetic fractures? A biomechanical study.
        Arch. Orthop. Trauma Surg. 2015; 135: 517-522https://doi.org/10.1007/s00402-015-2172-3
        • Götze C.
        • Steens W.
        • Vieth V.
        • Poremba C.
        • Claes L.
        • Steinbeck J.
        Primary stability in cementless femoral stems: custom-made versus conventional femoral prosthesis.
        Clin. Biomech. 2002; 17: 267-273https://doi.org/10.1016/S0268-0033(02)00012-8
        • Gracia L.
        • Ibarz E.
        • Puértolas S.
        • Cegoñino J.
        • López-Prats F.
        • Panisello J.J.
        • Herrera A.
        Study of bone remodeling of two models of femoral cementless stems by means of DEXA and finite elements.
        Biomed. Eng. Online. 2010; 9: 22https://doi.org/10.1186/1475-925X-9-22
        • Griffiths E.J.
        • Cash D.J.W.
        • Kalra S.
        • Hopgood P.J.
        Time to surgery and 30-day morbidity and mortality of periprosthetic hip fractures.
        Injury. 2013; 44: 1949-1952https://doi.org/10.1016/j.injury.2013.03.008
        • Grimberg A.
        • Jansson V.
        • Lützner J.
        • Melsheimer O.
        • Morlock M.
        • Steinbrück A.
        EPRD-Jahresbericht 2020.
        EPRD Deutsche Endoprothesenregister, Berlin2020
        • Gruner A.
        • Hockertz T.
        • Reilmann H.
        Die periprothetische Fraktur.
        Unfallchirurg. 2004; 107: 35-49https://doi.org/10.1007/s00113-003-0698-2
        • Jakubowitz E.
        • Seeger J.B.
        Periprosthetic fractures: concepts of biomechanical in vitro investigations.
        Int. Orthop. 2015; 39: 1971-1979https://doi.org/10.1007/s00264-015-2954-9
        • Jakubowitz E.
        • Seeger J.B.
        • Lee C.
        • Heisel C.
        • Kretzer J.P.
        • Thomsen M.N.
        Do short-stemmed-prostheses induce periprosthetic fractures earlier than standard hip stems? A biomechanical ex-vivo study of two different stem designs.
        Arch. Orthop. Trauma Surg. 2009; 129: 849-855https://doi.org/10.1007/s00402-008-0676-9
        • Jakubowitz E.
        • Seeger J.B.
        • Kretzer J.P.
        • Heisel C.
        • Kleinhans J.A.
        • Thomsen M.
        The influence of age, bone quality and body mass index on periprosthetic femoral fractures: a biomechanical laboratory study.
        Med. Sci. Monit. 2009; 15
        • Kannan A.
        • Owen J.R.
        • Wayne J.S.
        • Jiranek W.A.
        Loosely implanted cementless stems may become rotationally stable after loading.
        Clin. Orthop. Relat. Res. 2014; 472: 2231-2236https://doi.org/10.1007/s11999-014-3577-y
        • Karam J.
        • Campbell P.
        • Desai S.
        • Hunter M.
        Periprosthetic proximal femoral fractures in cemented and uncemented stems according to Vancouver classification: observation of a new fracture pattern.
        J. Orthop. Surg. Res. 2020; 15: 100https://doi.org/10.1186/s13018-020-01619-4
        • Khanuja H.S.
        • Vakil J.J.
        • Goddard M.S.
        • Mont M.A.
        Cementless femoral fixation in Total Hip Arthroplasty.
        J. Bone Joint Surg. Am. 2011; 93: 500-509https://doi.org/10.2106/JBJS.J.00774
        • Kolb A.
        • Grübl A.
        • Schneckener C.-D.
        • Chiari C.
        • Kaider A.
        • Lass R.
        • Windhager R.
        Cementless total hip arthroplasty with the rectangular titanium Zweymüller stem: a concise follow-up, at a minimum of twenty years, of previous reports.
        J. Bone Joint Surg. Am. 2012; 94: 1681-1684https://doi.org/10.2106/JBJS.K.01574
        • Kurtz S.
        • Ong K.
        • Lau E.
        • Mowat F.
        • Halpern M.
        Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030.
        J. Bone Joint Surg. Am. 2007; 89: 780-785https://doi.org/10.2106/JBJS.F.00222
        • Lindahl H.
        • Malchau H.
        • Herberts P.
        • Garellick G.
        Periprosthetic femoral fractures classification and demographics of 1049 periprosthetic femoral fractures from the Swedish National Hip Arthroplasty Register.
        J. Arthroplast. 2005; 20: 857-865https://doi.org/10.1016/j.arth.2005.02.001
        • Lindahl H.
        • Garellick G.
        • Regnér H.
        • Herberts P.
        • Malchau H.
        Three hundred and twenty-one periprosthetic femoral fractures.
        J. Bone Joint Surg. Am. 2006; 88: 1215-1222https://doi.org/10.2106/JBJS.E.00457
        • Lochab J.
        • Carrothers A.
        • Wong E.
        • McLachlin S.
        • Aldebeyan W.
        • Jenkinson R.
        • et al.
        Do Transcortical screws in a locking plate construct improve the stiffness in the fixation of Vancouver B1 Periprosthetic femur fractures? A biomechanical analysis of 2 different plating constructs.
        J. Orthop. Trauma. 2017; 31: 15-20https://doi.org/10.1097/BOT.0000000000000704
        • Lochmüller E.M.
        • Miller P.
        • Bürklein D.
        • Wehr U.
        • Rambeck W.
        • Eckstein F.
        In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur.
        Osteoporos. Int. 2000; 11: 361-367https://doi.org/10.1007/s001980070126
        • Loewenhielm G.
        • Hansson L.I.
        • Kaerrholm J.
        Fracture of the lower extremity after total hip replacement.
        Arch. Orthop. Trauma Surg. 1989; 108: 141-143https://doi.org/10.1007/BF00934256
        • Looker A.C.
        • Wahner H.W.
        • Dunn W.L.
        • Calvo M.S.
        • Harris T.B.
        • Heyse S.P.
        • et al.
        Updated data on proximal femur bone mineral levels of US adults.
        Osteoporos. Int. 1998; 8: 468-489https://doi.org/10.1007/s001980050093
        • Maggs J.
        • Wilson M.
        The relative merits of cemented and uncemented prostheses in Total Hip Arthroplasty.
        Indian J. Orthop. 2017; 51: 377-385https://doi.org/10.4103/ortho.IJOrtho_405_16
        • Masri B.A.
        • Meek R.M.D.
        • Duncan C.P.
        Periprosthetic fractures evaluation and treatment.
        Clin. Orthop. 2004; 420: 80-95https://doi.org/10.1097/01.blo.0000122241.70546.eb
        • Mont M.A.
        • Maar D.C.
        Fractures of the ipsilateral femur after hip arthroplasty: a statistical analysis of outcome based on 487 patients.
        J. Arthroplast. 1994; 9: 511-519https://doi.org/10.1016/0883-5403(94)90098-1
        • Nakashima Y.
        • Sun D.-H.
        • Trindade M.C.D.
        • Chun L.E.
        • Song Y.
        • Goodman S.B.
        • et al.
        Induction of macrophage C-C chemokine expression by titanium alloy and bone cement particles.
        J. Bone Joint Surg. (Br.). 1999; 81-B: 155-162https://doi.org/10.1302/0301-620X.81B1.0810155
        • Pivec R.
        • Issa K.
        • Kapadia B.H.
        • Cherian J.J.
        • Maheshwari A.V.
        • Bonutti P.M.
        • Mont M.A.
        Incidence and future projections of Periprosthetic Femoral Fracture following primary Total Hip Arthroplasty: an analysis of international registry data.
        J. Long-Term Eff. Med. Implants. 2015; 25: 269-275https://doi.org/10.1615/JLongTermEffMedImplants.2015012625
        • Rupprecht M.
        • Schlickewei C.
        • Fensky F.
        • Morlock M.
        • Püschel K.
        • Rueger J.M.
        • Lehmann W.
        Periprothetische Und interimplantäre Femurfrakturen: Biomechanische Analyse. [Periprosthetic and Interimplant Femoral Fractures: Biomechanical Analysis].
        vol. 118. Unfallchirurg, 2015: 1025-1032
        • Sakai R.
        • Takahashi A.
        • Takahira N.
        • Uchiyama K.
        • Yamamoto T.
        • Uchida K.
        • et al.
        Hammering force during Cementless Total Hip Arthroplasty and risk of microfracture.
        Hip Int. 2011; 21: 330-335https://doi.org/10.5301/hip.2011.8408
        • Schileo E.
        • Taddei F.
        • Cristofolini L.
        • Viceconti M.
        Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
        J. Biomech. 2008; 41: 356-367https://doi.org/10.1016/j.jbiomech.2007.09.009
        • Schwarz E.
        • Reinisch G.
        • Brandauer A.
        • Aharinejad S.
        • Scharf W.
        • Trieb K.
        Load transfer and periprosthetic fractures after total hip arthoplasty: comparison of periprosthetic fractures of femora implanted with cementless distal-load or proximal-load femoral components and measurement of the femoral strain at the time of implantation.
        Clin. Biomech. 2018; 54: 137-142https://doi.org/10.1016/j.clinbiomech.2018.03.010
        • Sidler-Maier C.C.
        • Waddell J.P.
        Incidence and predisposing factors of periprosthetic proximal femoral fractures: a literature review.
        Int. Orthop. 2015; 39: 1673-1682https://doi.org/10.1007/s00264-015-2721-y
        • Varga P.
        • Schwiedrzik J.
        • Zysset P.K.
        • Fliri-Hofmann L.
        • Widmer D.
        • Gueorguiev B.
        • et al.
        Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.
        J. Mech. Behav. Biomed. Mater. 2016; 57: 116-127https://doi.org/10.1016/j.jmbbm.2015.11.026
        • Wu C.C.
        • Au M.K.
        • Wu S.S.
        • Lin L.C.
        Risk factors for postoperative femoral fracture in cementless hip arthroplasty.
        J. Formos. Med. Assoc. 1999; 98: 190-194
        • Yasen A.T.
        • Haddad F.S.
        Periprosthetic fractures: bespoke solutions.
        Bone Joint J. 2014; 96-B: 48-55https://doi.org/10.1302/0301-620X.96B11.34300
        • Younger A.S.
        • Dunwoody J.
        • Duncan C.P.
        Periprosthetic hip and knee fractures: the scope of the problem.
        Instr. Course Lect. 1998; 47: 251-256
        • Zhu Y.
        • Chen W.
        • Sun T.
        • Zhang X.
        • Liu S.
        • Zhang Y.
        Risk factors for the periprosthetic fracture after total hip arthroplasty: a systematic review and meta-analysis.
        Scand. J. Surg. 2015; 104: 139-145https://doi.org/10.1177/1457496914543979