Posterior spinal stabilization: A biomechanical comparison of Laminar Hook Fusion to a Pedicle Screw System

      Highlights

      • Direct comparison of different techniques, unbiased by inter-patient variability.
      • Differences in inter-segmental movement were less evident in osteoporotic patients.
      • Laminar hook fusion is valid alternative in patients with degenerated bone density.
      • The study provided insight into construct failure, explaining screw loosening.
      • Postoperative restriction of specific movements could reduce implant loosening risk.

      Abstract

      Background

      Several spine instrumentation techniques have been introduced to correct inter-segmental alignment, or provide long-term stability. Whilst pedicle screws are considered the intervention of reference, we hypothesize that the week hold of osteoporotic bone, might be a clinical indicator for an alternative surgical approach.

      Methods

      To put this to the test, a non-linear Finite Element model, of a ligamentous lumbosacral spine, was employed to examine a stabilization spanning over L3-L5. Two different immobilization techniques (a Pedicle Screw System and Laminar Hook Fusion) are compared as to their biomechanical response during 7.5 Nm flexion, lateral flexion and torsion, while considering a 280 N follower load. Fifteen analyses performed in total, simulating patients of healthy and osteoporotic Bone Mineral Density.

      Findings

      Range of Motion was significantly reduced after instrumentation for both implant systems. This trend was more pronounced in the Pedicle Screw models, which were stressed to a higher degree. To evaluate implant loosening risk, we introduce the consideration of strain energy patterns around the screw tract. The notably higher intensity of these, for the osteoporotic model, taken into consideration with the weaker strength of the tissue and inconsistencies in the stress allocation between implant and bone, affirmed an increased risk for loosening of the Pedicle Screws in osteoporotic patients.

      Interpretation

      The analysis provided refined insight as to the treatment of osteoporotic patients as well as to their postoperative care, as restriction of specific movements (e.g. through bracing), could significantly restrict the stress values in the bone-implant interface and thus, reduce implant failure.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chun D.H.
        • Yoon D.H.
        • Kim K.N.
        • Yi S.
        • Shin D.A.
        • Ha Y.
        Biomechanical comparison of four different atlantoaxial posterior fixation constructs in adults: a finite element study.
        Spine (Phila. Pa. 1976). 2018; 43 (E891–E897)https://doi.org/10.1097/BRS.0000000000002584
        • Coe J.D.
        • Warden K.E.
        • Biomed M.
        • Herzig M.A.
        • McAfee P.C.
        Influence of bone mineral density on the fixation of thoracolumbar implants: a comparative study of transpedicular screws, laminar hooks, and spinous process wires.
        Spine (Phila. Pa. 1976). 1990; 15: 902-907https://doi.org/10.1097/00007632-199009000-00012
        • Ferguson S.J.
        • Steffen T.
        Biomechanics of the aging spine.
        Eur. Spine J. 2003; 122 (S97–S103)https://doi.org/10.1007/S00586-003-0621-0
        • Frost H.M.
        A 2003 update of bone physiology and Wolff’s Law for clinicians.
        Angle Orthod. 2004; 74: 3-15https://doi.org/10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2
        • Girardo M.
        • Massè A.
        • Risitano S.
        • Fusini F.
        Long versus short segment instrumentation in osteoporotic thoracolumbar vertebral fracture.
        Asian Spine J. 2021; 15: 424-430https://doi.org/10.31616/ASJ.2020.0033
        • Goldstein C.L.
        • Brodke D.S.
        • Choma T.J.
        Surgical management of spinal conditions in the elderly osteoporotic spine.
        Neurosurgery. 2015; 77: S98-S107https://doi.org/10.1227/NEU.0000000000000948
        • Helenius I.
        • Lamberg T.
        • Österman K.
        • Schlenzka D.
        • Yrjönen T.
        • Tervahartiala P.
        • Seitsalo S.
        • Poussa M.
        • Remes V.
        Posterolateral, anterior, or circumferential fusion in situ for high-grade spondylolisthesis in young patients: a long-term evaluation using the Scoliosis Research Society questionnaire.
        Spine (Phila. Pa. 1976). 2006; 31: 190-196https://doi.org/10.1097/01.BRS.0000194843.94071.09
        • Henninger H.B.
        • Reese S.P.
        • Anderson A.E.
        • Weiss J.A.
        Validation of computational models in biomechanics.
        Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010; 224: 801-812https://doi.org/10.1243/09544119JEIM649
        • Hernlund E.
        • Svedbom A.
        • Ivergård M.
        • Compston J.
        • Cooper C.
        • Stenmark J.
        • McCloskey E.V.
        • Jönsson B.
        • Kanis J.A.
        Osteoporosis in the European Union: medical management, epidemiology and economic burden.
        Arch. Osteoporos. 2013; 8: 136https://doi.org/10.1007/s11657-013-0136-1
        • Hirano T.
        • Hasegawa K.
        • Takahashi H.E.
        • Uchiyama S.
        • Hara T.
        • Washio T.
        • Sugiura T.
        • Yokaichiya M.
        • Ikeda M.
        Structural characteristics of the pedicle and its role in screw stability.
        Spine (Phila. Pa. 1976). 1997; 22: 2504-2510https://doi.org/10.1097/00007632-199711010-00007
        • Lehman R.A.
        • Kang D.G.
        • Wagner S.C.
        Management of Osteoporosis in Spine Surgery.
        J. Am. Acad. Orthop. Surg. 2015; 23: 253-263https://doi.org/10.5435/JAAOS-D-14-00042
        • Mackiewicz A.
        • Banach M.
        • Denisiewicz A.
        • Bedzinski R.
        Comparative studies of cervical spine anterior stabilization systems - finite element analysis.
        Clin. Biomech. 2016; 32: 72-79https://doi.org/10.1016/j.clinbiomech.2015.11.016
        • Maiman D.J.
        • Kumaresan S.
        • Yoganandan N.
        • Pintar F.A.
        Biomechanical effect of anterior cervical spine fusion on adjacent segments.
        Biomed. Mater. Eng. 1999; 9: 27-38
        • Malhotra D.
        • Kalb S.
        • Rodriguez-Martinez N.
        • Hem D.D.
        • Perez-Orribo L.
        • Crawford N.R.
        • Sonntag V.K.H.
        Instrumentation of the posterior thoracolumbar spine: from wires to pedicle screws.
        Neurosurgery. 2014; 10: 497-505https://doi.org/10.1227/NEU.0000000000000489
        • Marchand F.
        • Ahmed A.M.
        Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus.
        Spine (Phila. Pa. 1976). 1990; 15: 402-410https://doi.org/10.1097/00007632-199005000-00011
        • Morgan E.F.
        • Bayraktar H.H.
        • Keaveny T.M.
        Trabecular bone modulus–density relationships depend on anatomic site.
        J. Biomech. 2003; 36: 897-904https://doi.org/10.1016/S0021-9290(03)00071-X
        • Mosekilde L.
        Vertebral structure and strengthIn vivo andIn vitro.
        Calcif. Tissue Int. 1993; 53: S121-S126https://doi.org/10.1007/BF01673420
        • Odeh K.
        • Rosinski A.
        • Leasure J.
        • Kondrashov D.
        Pedicle screws challenged: lumbar cortical density and thickness are greater in the posterior elements than in the pedicles.
        Glob. Spine J. 2019; (219256821988936)https://doi.org/10.1177/2192568219889361
        • Panjabi M.M.
        • Oxland T.R.
        • Yamamoto I.
        • Crisco J.J.
        Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves.
        J. Bone Jt. Surg. 1994; 76: 413-424https://doi.org/10.2106/00004623-199403000-00012
        • Paxinos O.
        • Tsitsopoulos P.P.
        • Zindrick M.R.
        • Voronov L.I.
        • Lorenz M.A.
        • Havey R.M.
        • Patwardhan A.G.
        Evaluation of pullout strength and failure mechanism of posterior instrumentation in normal and osteopenic thoracic vertebrae.
        J. Neurosurg. Spine. 2010; 13: 469-476https://doi.org/10.3171/2010.4.SPINE09764
        • Rohlmann A.
        • Neller S.
        • Claes L.
        • Bergmann G.
        • Wilke H.-J.
        Influence of a follower load on Intradiscal pressure and intersegmental rotation of the lumbar spine.
        Spine (Phila. Pa. 1976). 2001; 26 (E557–E561)https://doi.org/10.1097/00007632-200112150-00014
        • Rometsch E.
        • Spruit M.
        • Zigler J.E.
        • Menon V.K.
        • Ouellet J.A.
        • Mazel C.
        • Härtl R.
        • Espinoza K.
        • Kandziora F.
        Screw-related complications after instrumentation of the osteoporotic spine: a systematic literature review with Meta-analysis.
        Glob. Spine J. 2020; 10: 69-88https://doi.org/10.1177/2192568218818164
        • Schizas C.
        • Tzinieris N.
        • Tsiridis E.
        • Kosmopoulos V.
        Minimally invasive versus open transforaminal lumbar interbody fusion: evaluating initial experience.
        Int. Orthop. 2009; 33: 1683https://doi.org/10.1007/S00264-008-0687-8
        • Sharma M.
        • Langrana N.A.
        • Rodriguez J.
        Role of ligaments and facets in lumbar spinal stability.
        Spine (Phila. Pa. 1976). 1995; 20: 887-900https://doi.org/10.1097/00007632-199504150-00003
        • Silva M.J.
        • Gibson L.J.
        Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure.
        Bone. 1997; 21: 191-199https://doi.org/10.1016/S8756-3282(97)00100-2
        • Smit T.H.
        • Odgaard A.
        • Schneider E.
        Structure and function of vertebral trabecular bone.
        Spine (Phila. Pa. 1976). 1997; 22: 2823-2833https://doi.org/10.1097/00007632-199712150-00005
        • Tomé-Bermejo F.
        • Piñera A.R.
        • Alvarez-Galovich L.
        Osteoporosis and the Management of Spinal Degenerative Disease (I).
        Arch. Bone Jt. Surg. 2017; 5: 272-282
        • Tsouknidas A.
        The effect of pedicle screw implantation depth and angle on the loading and stiffness of a spinal fusion assembly.
        Biomed. Mater. Eng. 2015; 25: 425-433https://doi.org/10.3233/BME-151537
        • Tsouknidas A.
        • Michailidis N.
        • Savvakis S.
        • Anagnostidis K.
        • Bouzakis K.-D.
        • Kapetanos G.
        A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads.
        J. Appl. Biomech. 2012; 28: 448-456https://doi.org/10.1123/jab.28.4.448
        • Tsouknidas A.
        • Savvakis S.
        • Asaniotis Y.
        • Anagnostidis K.
        • Lontos A.
        • Michailidis N.
        The effect of kyphoplasty parameters on the dynamic load transfer within the lumbar spine considering the response of a bio-realistic spine segment.
        Clin. Biomech. 2013; 28: 949-955https://doi.org/10.1016/j.clinbiomech.2013.09.013
        • Wilke H.-J.
        • Kaiser D.
        • Volkheimer D.
        • Hackenbroch C.
        • Püschel K.
        • Rauschmann M.
        A pedicle screw system and a lamina hook system provide similar primary and long-term stability: a biomechanical in vitro study with quasi-static and dynamic loading conditions.
        Eur. Spine J. 2016; 25: 2919-2928https://doi.org/10.1007/s00586-016-4679-x
        • Wu Y.
        • Chen C.H.
        • Tsuang F.Y.
        • Lin Y.C.
        • Chiang C.J.
        • Kuo Y.J.
        The stability of long-segment and short-segment fixation for treating severe burst fractures at the thoracolumbar junction in osteoporotic bone: a finite element analysis.
        PLoS One. 2019; 14https://doi.org/10.1371/JOURNAL.PONE.0211676
        • Xiao Z.
        • Wang L.
        • Gong H.
        • Zhu D.
        • Zhang X.
        A non-linear finite element model of human L4-L5 lumbar spinal segment with three-dimensional solid element ligaments.
        Theor. Appl. Mech. Lett. 2011; 1064001https://doi.org/10.1063/2.1106401
        • Zienkiewicz O.C.
        • Taylor R.L.
        The Finite Element Method.
        McGraw-Hill, New York1989