Altered lower extremity biomechanics following anterior cruciate ligament reconstruction during single-leg and double-leg stop-jump tasks: A bilateral total support moment analysis

  • Author Footnotes
    1 University of Southern California, Division of Biokinesiology and Physical Therapy, 1540 East Alcazar Street, Los Angeles, CA 90089, United States.
    Willa Ma
    Correspondence
    Corresponding author at: University of Southern California, Division of Biokinesiology and Physical Therapy, 1540 East Alcazar Street, Los Angeles, CA 90089, United States.
    Footnotes
    1 University of Southern California, Division of Biokinesiology and Physical Therapy, 1540 East Alcazar Street, Los Angeles, CA 90089, United States.
    Affiliations
    Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar Street, Los Angeles, CA 90089, United States

    Michael W. Kryzyzewski Human Performance Laboratory, Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Cindy Y. Pan
    Affiliations
    Michael W. Kryzyzewski Human Performance Laboratory, Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Lee H. Diehl
    Affiliations
    Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Jocelyn R. Wittstein
    Affiliations
    Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Jonathan C. Riboh
    Affiliations
    Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Alison P. Toth
    Affiliations
    Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Annunziato Amendola
    Affiliations
    Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Mallory S. Faherty
    Affiliations
    Michael W. Kryzyzewski Human Performance Laboratory, Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Carolyn Killelea
    Affiliations
    Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Daniel T. Le
    Affiliations
    Michael W. Kryzyzewski Human Performance Laboratory, Department of Orthopaedic Surgery, Duke University, 3475 Erwin Road, Durham, NC 27705, United States
    Search for articles by this author
  • Timothy C. Sell
    Affiliations
    Atrium Health Musculoskeletal Institute, 2001 Vail Ave, Charlotte, NC 28207, United States
    Search for articles by this author
  • Author Footnotes
    1 University of Southern California, Division of Biokinesiology and Physical Therapy, 1540 East Alcazar Street, Los Angeles, CA 90089, United States.

      Highlights

      • Total support moment was investigated following anterior cruciate ligament reconstruction.
      • Total support moment was examined at peak vertical ground reaction force during the stop jump task.
      • Total support moment did not differ between limbs.
      • There was a decreased knee contribution to the total support moment in the reconstructed limb.
      • During the single-leg stop jump, the knee contribution partially shifted to the ankle joint.

      Abstract

      Background

      Injury to the anterior cruciate ligament (ACL) can lead to long-lasting biomechanical alterations that put individuals at risk of a second ACL injury. Examining the total support moment may reveal between- and within-limb compensatory strategies.

      Methods

      Twenty-six participants who were cleared to return to sport following ACL reconstruction were recruited. Each participant completed the single-leg and double-leg stop jump tasks. These tasks were analyzed using force plates and a 3D motion analysis system. The total support moment was calculated by summing the internal moments of the hip, knee and ankle at peak vertical ground reaction force.

      Findings

      Internal knee extensor moment was lower in the involved limb compared to the uninvolved for both tasks (17.6%, P = 0.022; 18.4%, P = 0.008). No significant between-limb differences were found for the total support moment. The involved limb exhibited an 18.2% decrease in knee joint contribution (P = 0.01) and a 21.6% increase in ankle joint contribution (P = 0.016) to the total support moment compared to the uninvolved limb in the single-leg stop jump task.

      Interpretation

      Compensation for the involved knee is likely due to altered biomechanics that redistributes load to the uninvolved knee or to adjacent joints of the same limb. A partial shift in joint contribution from the knee to the ankle during the single-leg stop jump task demonstrates a tendency to decrease load to the knee. Further studies are needed to investigate how these adaptations impact the prevalence of subsequent injury and poor joint health.
      ACL (Anterior cruciate ligament), ACLR (Anterior cruciate ligament reconstruction), OA (osteoarthritis), DL (double-leg stop jump), SL (single-leg stop jump), TSM (total support moment), vGRF (vertical ground reaction force)

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baumgart C.
        • Schubert M.
        • Hoppe M.W.
        • Gokeler A.
        • Freiwald J.
        Do ground reaction forces during unilateral and bilateral movements exhibit compensation strategies following ACL reconstruction?.
        Knee Surg. Sport Traumatol. Arthrosc. 2017; 25: 1385-1394https://doi.org/10.1007/s00167-015-3623-7
        • Bendjaballah M.Z.
        • Shirazi-Adl A.
        • Zukor D.J.
        Finite Element Analysis of Human Knee Joint in Varus-Valgus.
        vol. 12. 1997
        • Boden B.P.
        • Dean C.S.
        • Feagin J.A.
        • Garrett W.E.
        Mechanisms of anterior cruciate ligament injury.
        Orthopedics. 2000; 23: 573-578https://doi.org/10.3928/0147-7447-20000601-15
        • Bodkin S.G.
        • Werner B.C.
        • Slater L.V.
        • Hart J.M.
        Post-traumatic osteoarthritis diagnosed within 5 years following ACL reconstruction.
        Knee Surg. Sport Traumatol. Arthrosc. 2020; 28: 790-796https://doi.org/10.1007/s00167-019-05461-y
        • Burland J.P.
        • Lepley A.S.
        • Frechette L.
        • Lepley L.K.
        Protracted alterations in muscle activation strategies and knee mechanics in patients after Anterior Cruciate Ligament Reconstruction.
        Knee Surg. Sport Traumatol. Arthrosc. 2020; 28: 3766-3772https://doi.org/10.1007/s00167-019-05833-4
        • Bush-Joseph C.A.
        • Hurwitz D.E.
        • Patel R.R.
        • et al.
        Dynamic function after anterior cruciate ligament reconstruction with autologous patellar tendon.
        Am. J. Sports Med. 2001; 29: 36-41https://doi.org/10.1177/03635465010290011101
      1. Chappell JD, Yu B, Kirkendall DT, Garrett WE. A Comparison of Knee Kinetics between Male and Female Recreational Athletes in Stop-Jump Tasks. vol. 30; 2002.

        • Chappell J.D.
        • Alexander Creighton R.
        • Giuliani C.
        • Yu B.
        • Garrett W.E.
        Kinematics and Electromyography of Landing Preparation in Vertical Stop-Jump Risks for Noncontact Anterior Cruciate Ligament Injury.
        (Published online)2007https://doi.org/10.1177/0363546506294077
        • Chaudhari A.M.W.
        • Briant P.L.
        • Bevill S.L.
        • Koo S.
        • Andriacchi T.P.
        Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury.
        Med. Sci. Sports Exerc. 2008; 40: 215-222https://doi.org/10.1249/mss.0b013e31815cbb0e
        • Davis R.B.
        • Õunpuu S.
        • Tyburski D.
        • Gage J.R.
        A gait analysis data collection and reduction technique.
        Hum. Mov. Sci. 1991; 10: 575-587https://doi.org/10.1016/0167-9457(91)90046-Z
        • Ernst G.P.
        • Saliba E.
        • Diduch D.R.
        • Hurwitz S.R.
        • Ball D.W.
        Lower-extremity compensations following anterior cruciate ligament reconstruction.
        Phys. Ther. 2000; 80: 251-260https://doi.org/10.1093/ptj/80.3.251
        • Friel N.A.
        • Chu C.R.
        The role of ACL injury in the development of posttraumatic knee osteoarthritis.
        Clin. Sports Med. 2013; 32: 1-12https://doi.org/10.1016/j.csm.2012.08.017
        • Gardinier E.S.
        • Manal K.
        • Buchanan T.S.
        • Snyder-Mackler L.
        Altered loading in the injured knee after ACL rupture.
        J. Orthop. Res. 2013; 31: 458-464https://doi.org/10.1002/jor.22249
        • Goerger B.M.
        • Marshall S.W.
        • Beutler A.I.
        • Blackburn J.T.
        • Wilckens J.H.
        • Padua D.A.
        Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study.
        Br. J. Sports Med. 2015; 49: 188-195https://doi.org/10.1136/bjsports-2013-092982
        • Hart J.M.
        • Ko J.W.K.
        • Konold T.
        • Pietrosimione B.
        Sagittal plane knee joint moments following anterior cruciate ligament injury and reconstruction: a systematic review.
        Clin. Biomech. 2010; 25: 277-283https://doi.org/10.1016/j.clinbiomech.2009.12.004
        • Heebner N.R.
        • Rafferty D.M.
        • Wohleber M.F.
        • et al.
        Landing kinematics and kinetics at the knee during different landing tasks.
        J. Athl. Train. 2017; 52: 1101-1108https://doi.org/10.4085/1062-6050-52.11.25
        • Hewett T.E.
        • Myer G.D.
        • Ford K.R.
        • et al.
        Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study.
        Am. J. Sports Med. 2005; 33: 492-501https://doi.org/10.1177/0363546504269591
        • Hof A.L.
        On the interpretation of the support moment.
        Gait Post. 2000; 12: 196-199https://doi.org/10.1016/S0966-6362(00)00084-9
        • Hooper D.M.
        • Morrissey M.C.
        • Drechsler W.I.
        • Clark N.C.
        • Coutts F.J.
        • McAuliffe T.B.
        Gait analysis 6 and 12 months after anterior cruciate ligament reconstruction surgery.
        Clin. Orthop. Relat. Res. 2002; 403: 168-178https://doi.org/10.1097/00003086-200210000-00025
        • Hurd W.J.
        • Snyder-Mackler L.
        Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait.
        J. Orthop. Res. 2007; 25: 1369-1377https://doi.org/10.1002/jor.20440
        • Johnson R.J.
        The anterior cruciate ligament problem.
        Clin. Orthop. Relat. Res. 1983; 172: 14-18https://doi.org/10.1097/00003086-198301000-00005
        • Kadaba M.P.
        • Ramakrishnan H.K.
        • Wootten M.E.
        Measurement of lower extremity kinematics during level walking.
        J. Orthop. Res. 1990; 8: 383-392https://doi.org/10.1002/jor.1100080310
        • Leppänen M.
        • Pasanen K.
        • Krosshaug T.
        • et al.
        Sagittal plane hip, knee, and ankle biomechanics and the risk of anterior cruciate ligament injury: a prospective study.
        Orthop. J. Sport. Med. 2017; 5https://doi.org/10.1177/2325967117745487
        • Luc-Harkey B.A.
        • Gribble P.A.
        • Pietrosimone B.G.
        Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis.
        J. Athl. Train. 2014; 49: 806-819https://doi.org/10.4085/1062-6050-49.3.35
        • Meunier A.
        • Odensten M.
        • Good L.
        Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a randomized study with a 15-year follow-up.
        Scand. J. Med. Sci. Sport. 2007; 17: 230-237https://doi.org/10.1111/j.1600-0838.2006.00547.x
        • Oberländer K.D.
        • Brüggemann G.P.
        • Höher J.
        • Karamanidis K.
        Altered landing mechanics in ACL-reconstructed patients.
        Med. Sci. Sports Exerc. 2013; 45: 506-513https://doi.org/10.1249/MSS.0b013e3182752ae3
        • Orishimo K.F.
        • Kremenic I.J.
        • Mullaney M.J.
        • McHugh M.P.
        • Nicholas S.J.
        Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction.
        Knee Surg. Sport Traumatol. Arthrosc. 2010; 18: 1587-1593https://doi.org/10.1007/s00167-010-1185-2
        • Pappas E.
        • Hagins M.
        • Sheikhzadeh A.
        • Nordin M.
        • Rose D.
        Biomechanical differences between unilateral and bilateral landings from a jump: gender differences.
        Clin. J. Sport Med. 2007; 17: 263-268https://doi.org/10.1097/JSM.0b013e31811f415b
        • Paterno M.V.
        • Schmitt L.C.
        • Ford K.R.
        • et al.
        Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport.
        Am. J. Sports Med. 2010; 38: 1968-1978https://doi.org/10.1177/0363546510376053
        • Paterno M.V.
        • Rauh M.J.
        • Schmitt L.C.
        • Ford K.R.
        • Hewett T.E.
        Incidence of contralateral and ipsilateral Anterior Cruciate Ligament (ACL) injury after primary ACL reconstruction and return to sport.
        Clin. J. Sport Med. 2012; 22: 116-121https://doi.org/10.1097/JSM.0b013e318246ef9e
        • Paterno M.V.
        • Rauh M.J.
        • Schmitt L.C.
        • Ford K.R.
        • Hewett T.E.
        Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport.
        Am. J. Sports Med. 2014; 42: 1567-1573https://doi.org/10.1177/0363546514530088
        • Petersen W.
        • Taheri P.
        • Forkel P.
        • Zantop T.
        Return to play following ACL reconstruction: a systematic review about strength deficits.
        Arch. Orthop. Trauma Surg. 2014; 134: 1417-1428https://doi.org/10.1007/s00402-014-1992-x
        • Petrella M.
        • Serrão P.
        • Selistre L.
        • Lessi G.
        • Gonçalves G.
        • Mattiello S.
        Individual joint contributions to the total support moment during the sit-to-stand task differentiate mild and moderate knee osteoarthritis.
        Clin. Biomech. 2019; 70: 52-58https://doi.org/10.1016/j.clinbiomech.2019.07.029
        • Pfeiffer S.J.
        • Spang J.T.
        • Nissman D.
        • et al.
        Gait mechanics and T1ρ MRI of tibiofemoral cartilage 6 months after ACL reconstruction.
        Med. Sci. Sport Exerc. 2019; 51: 630-639https://doi.org/10.1249/MSS.0000000000001834
        • Pietrosimone B.G.
        • Lepley A.S.
        • Ericksen H.M.
        • Clements A.
        • Sohn D.H.
        • Gribble P.A.
        Neural excitability alterations after anterior cruciate ligament reconstruction.
        J. Athl. Train. 2015; 50: 665-674https://doi.org/10.4085/1062-6050-50.1.11
        • Pozzi F.
        • Di Stasi S.
        • Zeni J.A.
        • Barrios J.A.
        Single-limb drop landing biomechanics in active individuals with and without a history of anterior cruciate ligament reconstruction: a total support analysis.
        Clin. Biomech. 2017; 43: 28-33https://doi.org/10.1016/j.clinbiomech.2017.01.020
        • Roos E.M.
        Joint injury causes knee osteoarthritis in young adults.
        Curr. Opin. Rheumatol. 2005; 17: 195-200https://doi.org/10.1097/01.bor.0000151406.64393.00
        • Rudolph K.S.
        • Eastlack M.E.
        • Axe M.J.
        • Snyder-Mackler L.
        1998 Basmajian Student Award Paper Movement patterns after anterior cruciate ligament injury: a comparison of patients who compensate well for the injury and those who require operative stabilization.
        J. Electromyogr. Kinesiol. 1998; 8: 349-362https://doi.org/10.1016/S1050-6411(97)00042-4
        • Rudolph K.S.
        • Axe M.J.
        • Snyder-Mackler L.
        Dynamic stability after ACL injury: who can hop?.
        Knee Surg. Sport Traumatol. Arthrosc. 2000; 8: 262-269https://doi.org/10.1007/s001670000130
        • Salem G.J.
        • Salinas R.
        • Harding F.V.
        Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction.
        Arch. Phys. Med. Rehabil. 2003; 84: 1211-1216https://doi.org/10.1016/S0003-9993(03)00034-0
        • Sanders T.L.
        • Maradit Kremers H.
        • Bryan A.J.
        • et al.
        Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study.
        Am. J. Sports Med. 2016; 44: 1502-1507https://doi.org/10.1177/0363546516629944
        • Schmitt L.C.
        • Paterno M.V.
        • Ford K.R.
        • Myer G.D.
        • Hewett T.E.
        Strength asymmetry and landing mechanics at return to sport after anterior cruciate ligament reconstruction.
        Med. Sci. Sports Exerc. 2015; 47: 1426-1434https://doi.org/10.1249/MSS.0000000000000560
        • Sell T.C.
        • Ferris C.M.
        • Abt J.P.
        • et al.
        The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism.
        Am. J. Sports Med. 2006; 34: 43-54https://doi.org/10.1177/0363546505278696
        • Sell T.C.
        • Ferris C.M.
        • Abt J.P.
        • et al.
        Predictors of proximal tibia anterior shear force during a vertical stop-jump.
        J. Orthop. Res. 2007; 25: 1589-1597https://doi.org/10.1002/jor.20459
        • Sigward S.M.
        • Chan M.-S.M.
        • Lin P.E.
        • Almansouri S.Y.
        • Pratt K.A.
        Compensatory strategies that reduce knee extensor demand during a bilateral squat change from 3 to 5 months following anterior cruciate ligament reconstruction.
        J. Orthop. Sport. Phys. Ther. 2018; 48: 713-718https://doi.org/10.2519/jospt.2018.7977
        • Vairo G.L.
        • Myers J.B.
        • Sell T.C.
        • Fu F.H.
        • Harner C.D.
        • Lephart S.M.
        Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction.
        Knee Surg. Sport Traumatol. Arthrosc. 2008; 16: 2-14https://doi.org/10.1007/s00167-007-0427-4
        • Wang L.I.
        • Peng H.T.
        Biomechanical comparisons of single- and double-legged drop jumps with changes in drop height.
        Int. J. Sports Med. 2014; 35: 522-527https://doi.org/10.1055/s-0033-1345133
        • Webster K.E.
        • Wittwer J.E.
        • O’Brien J.
        • Feller J.A.
        Gait patterns after anterior cruciate ligament reconstruction are related to graft type.
        Am. J. Sports Med. 2005; 33: 247-254https://doi.org/10.1177/0363546504266483
        • Wellsandt E.
        • Gardinier E.S.
        • Manal K.
        • Axe M.J.
        • Buchanan T.S.
        • Snyder-Mackler L.
        Decreased knee joint loading associated with early knee osteoarthritis after anterior cruciate ligament injury.
        Am. J. Sports Med. 2016; 44: 143-151https://doi.org/10.1177/0363546515608475
        • Winter D.A.
        Overall principle of lower limb support during stance phase of gait.
        J. Biomech. 1980; 13: 923-927https://doi.org/10.1016/0021-9290(80)90162-1
        • Wright R.W.
        • Dunn W.R.
        • Amendola A.
        • et al.
        Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction: a prospective MOON cohort study.
        Am. J. Sports Med. 2007; 35: 1131-1134https://doi.org/10.1177/0363546507301318
        • Yu B.
        • Lin C.F.
        • Garrett W.E.
        Lower extremity biomechanics during the landing of a stop-jump task.
        Clin. Biomech. 2006; 21: 297-305https://doi.org/10.1016/j.clinbiomech.2005.11.003