Task dependent changes in mechanical and biomechanical measures result from manipulating stiffness settings in a prosthetic foot

      Highlights

      • Three stiffness settings were analyzed with a novel prosthetic foot design.
      • Dynamic Joint Stiffness can provide insight into a prosthetic foot's dynamics.
      • Prosthetic foot dynamics and characteristics during gait are task dependent.
      • Mechanical data does not capture the prosthetic foot's dynamics across gait tasks.
      • Studies of long-term effects of stiffness change and users´ preferences are needed.

      Abstract

      Background

      Adaptation of lower limb function to different gait tasks is inherently not as effective among individuals with lower limb amputation as compared to able-bodied individuals. Varying stiffness of a prosthetic foot may be a way of facilitating gait tasks that require larger ankle joint range of motion.

      Methods

      Three stiffness settings of a novel prosthetic foot design were tested for level walking at three speeds as well as for 7,5° incline and decline walking. Outcome measures, describing ankle range of motion and ankle dynamic joint stiffness were contrasted across the three stiffness settings. Standardized mechanical tests were done for the hindfoot and forefoot.

      Findings

      Dorsiflexion angle was incrementally increased with a softer foot and a faster walking speed / higher degree of slope. The concurrent dynamic joint stiffness exhibited a less systematic change, especially during INCLINE and DECLINE walking. The small difference seen between the stiffness settings for hindfoot loading limits analysis for the effects of stiffness during weight acceptance, however, a stiffer foot significantly restricted plantarflexion during DECLINE.

      Interpretations

      Varying stiffness settings within a prosthetic foot does have an effect on prosthetic foot dynamics, and differences are task dependent, specifically in parameters involving kinetic attributes. When considering the need for increased ankle range of motion while performing more demanding gait tasks, a foot that allows the users themselves to adjust stiffness according to the task at hand may be of benefit for active individuals, possibly enhancing the user's satisfaction and comfort during various daily activities.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adamczyk P.G.
        • Roland M.
        • Hahn M.E.
        Sensitivity of biomechanical outcomes to independent variations of hindfoot and forefoot stiffness in foot prostheses.
        Hum. Mov. Sci. 2017; 54: 154-171https://doi.org/10.1016/j.humov.2017.04.005
        • Argunsah Bayram H.
        • Bayram M.B.
        Dynamic functional stiffness index of the ankle joint during daily living.
        J. Foot Ankle Surg. 2018; 57: 668-674https://doi.org/10.1053/j.jfas.2017.11.034
        • Davot J.
        • Thomas-Pohl M.
        • Villa C.
        • Bonnet X.
        • Lapeyre E.
        • Bascou J.
        • et al.
        Experimental characterization of the moment-angle curve during level and slope locomotion of transtibial amputee: which parameters can be extracted to quantify the adaptations of microprocessor prosthetic ankle?.
        Proc. Inst. Mech. Eng. H. 2021; 235: 762-769https://doi.org/10.1177/09544119211006523
        • de David A.C.
        • Carpes F.P.
        • Stefanyshyn D.
        Effects of changing speed on knee and ankle joint load during walking and running.
        J. Sports Sci. 2015; 33: 391-397https://doi.org/10.1080/02640414.2014.946074
        • Fey N.P.
        • Klute G.K.
        • Neptune R.R.
        The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
        Clin. Biomech. 2011; 26: 1025-1032https://doi.org/10.1016/j.clinbiomech.2011.06.007
        • Fradet L.
        • Alimusaj M.
        • Braatz F.
        • Wolf S.I.
        Biomechanical analysis of ramp ambulation of transtibial amputees with an adaptive ankle foot system.
        Gait Posture. 2010; 32: 191-198https://doi.org/10.1016/j.gaitpost.2010.04.011
        • Fukuchi C.A.
        • Fukuchi R.K.
        • Duarte M.
        Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis.
        Syst. Rev. 2019; 8: 153https://doi.org/10.1186/s13643-019-1063-z
        • Gates D.H.
        • Dingwell J.B.
        • Scott S.J.
        • Sinitski E.H.
        • Wilken J.M.
        Gait characteristics of individuals with transtibial amputations walking on a destabilizing rock surface.
        Gait Posture. 2012; 36: 33-39https://doi.org/10.1016/j.gaitpost.2011.12.019
        • Gates D.H.
        • Wilken J.M.
        • Scott S.J.
        • Sinitski E.H.
        • Dingwell J.B.
        Kinematic strategies for walking across a destabilizing rock surface.
        Gait Posture. 2012; 35: 36-42https://doi.org/10.1016/j.gaitpost.2011.08.001
        • Glanzer E.M.
        • Adamczyk P.G.
        Design and validation of a semi-active variable stiffness foot prosthesis.
        IEEE Trans. Neural Syst. Rehabil. Eng. 2018; 26: 2351-2359https://doi.org/10.1109/tnsre.2018.2877962
        • Halsne E.G.
        • Czerniecki J.M.
        • Shofer J.B.
        • Morgenroth D.C.
        The effect of prosthetic foot stiffness on foot-ankle biomechanics and relative foot stiffness perception in people with transtibial amputation.
        Clin. Biomech. (Bristol, Avon). 2020; 80: 105141https://doi.org/10.1016/j.clinbiomech.2020.105141
        • Hansen A.
        Effects of alignment on the roll-over shapes of prosthetic feet.
        Prosthetics Orthot. Int. 2008; 32: 390-402https://doi.org/10.1080/03093640802366158
        • Hansen A.H.
        • Childress D.S.
        • Miff S.C.
        • Gard S.A.
        • Mesplay K.P.
        The human ankle during walking: implications for design of biomimetic ankle prostheses.
        J. Biomech. 2004; 37: 1467-1474https://doi.org/10.1016/j.jbiomech.2004.01.017
        • Hurwitz D.E.
        • Sumner D.R.
        • Block J.A.
        Bone density, dynamic joint loading and joint degeneration. A review.
        Cells Tissues Organs. 2001; 169: 201-209https://doi.org/10.1159/000047883
        • Klodd E.
        • Hansen A.
        • Fatone S.
        • Edwards M.
        Effects of prosthetic foot forefoot flexibility on gait of unilateral transtibial prosthesis users.
        J. Rehabil. Res. Dev. 2010; 47: 899-910https://doi.org/10.1682/jrrd.2009.10.0166
        • Koehler-McNicholas S.R.
        • Nickel E.A.
        • Barrons K.
        • Blaharski K.E.
        • Dellamano C.A.
        • Ray S.F.
        • et al.
        Mechanical and dynamic characterization of prosthetic feet for high activity users during weighted and unweighted walking.
        PLoS One. 2018; 13e0202884https://doi.org/10.1371/journal.pone.0202884
        • Langlois K.
        • Villa C.
        • Bonnet X.
        • Lavaste F.
        • Fodé P.
        • Martinet N.
        • et al.
        Influence of physical capacities of males with transtibial amputation on gait adjustments on sloped surfaces.
        J. Rehabil. Res. Dev. 2014; 51: 193-200https://doi.org/10.1682/jrrd.2013.05.0118
        • Lecomte C.
        • Ármannsdóttir A.L.
        • Starker F.
        • Tryggvason H.
        • Briem K.
        • Brynjolfsson S.
        Variable stiffness foot design and validation.
        J. Biomech. 2021; 122: 110440https://doi.org/10.1016/j.jbiomech.2021.110440
        • Lelas J.L.
        • Merriman G.J.
        • Riley P.O.
        • Kerrigan D.C.
        Predicting peak kinematic and kinetic parameters from gait speed.
        Gait Posture. 2003; 17: 106-112https://doi.org/10.1016/s0966-6362(02)00060-7
        • Leroux A.
        • Fung J.
        • Barbeau H.
        Postural adaptation to walking on inclined surfaces: I. Normal strategies.
        Gait Posture. 2002; 15: 64-74https://doi.org/10.1016/s0966-6362(01)00181-3
        • Major M.J.
        • Twiste M.
        • Kenney L.P.
        • Howard D.
        The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait.
        Clin. Biomech. 2014; 29: 98-104https://doi.org/10.1016/j.clinbiomech.2013.10.012
        • Major M.J.
        • Twiste M.
        • Kenney L.P.
        • Howard D.
        The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation.
        J. Rehabil. Res. Dev. 2016; 53: 839-852https://doi.org/10.1682/jrrd.2015.08.0148
        • McIntosh A.S.
        • Beatty K.T.
        • Dwan L.N.
        • Vickers D.R.
        Gait dynamics on an inclined walkway.
        J. Biomech. 2006; 39: 2491-2502https://doi.org/10.1016/j.jbiomech.2005.07.025
        • Nolan L.
        • Wit A.
        • Dudziñski K.
        • Lees A.
        • Lake M.
        • Wychowañski M.
        Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees.
        Gait Posture. 2003; 17: 142-151https://doi.org/10.1016/s0966-6362(02)00066-8
        • Pillet H.
        • Drevelle X.
        • Bonnet X.
        • Villa C.
        • Martinet N.
        • Sauret C.
        • et al.
        APSIC: training and fitting amputees during situations of daily living.
        IRBM. 2014; 35https://doi.org/10.1016/j.irbm.2014.02.005
        • Rodrigues F.B.
        • Andrade A.O.
        • Vieira M.F.
        Effects of inclined surfaces on gait variability and stability in unilateral lower limb amputees.
        Med. Biol. Eng. Comput. 2019; 57: 2337-2346https://doi.org/10.1007/s11517-019-02042-6
        • Safaeepour Z.
        • Esteki A.
        • Ghomshe F.T.
        • Abu Osman N.A.
        Quantitative analysis of human ankle characteristics at different gait phases and speeds for utilizing in ankle-foot prosthetic design.
        Biomed. Eng. Online. 2014; 13: 19https://doi.org/10.1186/1475-925x-13-19
        • Shell C.E.
        • Segal A.D.
        • Klute G.K.
        • Neptune R.R.
        The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
        Clin. Biomech. 2017; 49: 56-63https://doi.org/10.1016/j.clinbiomech.2017.08.003
        • Shepherd M.K.
        • Rouse E.J.
        The VSPA foot: a quasi-passive ankle-foot prosthesis with continuously variable stiffness.
        IEEE Trans. Neural Syst. Rehabil. Eng. 2017; 25: 2375-2386https://doi.org/10.1109/tnsre.2017.2750113
        • Shepherd M.K.
        • Azocar A.F.
        • Major M.J.
        • Rouse E.J.
        Amputee perception of prosthetic ankle stiffness during locomotion.
        J. Neuroeng. Rehabil. 2018; 15: 99https://doi.org/10.1186/s12984-018-0432-5
        • Stoquart G.
        • Detrembleur C.
        • Lejeune T.
        Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking.
        Neurophysiol. Clin. 2008; 38: 105-116https://doi.org/10.1016/j.neucli.2008.02.002
        • Struyf P.A.
        • van Heugten C.M.
        • Hitters M.W.
        • Smeets R.J.
        The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees.
        Arch. Phys. Med. Rehabil. 2009; 90: 440-446https://doi.org/10.1016/j.apmr.2008.08.220
        • Varrecchia T.
        • Serrao M.
        • Rinaldi M.
        • Ranavolo A.
        • Conforto S.
        • De Marchis C.
        • et al.
        Common and specific gait patterns in people with varying anatomical levels of lower limb amputation and different prosthetic components.
        Hum. Mov. Sci. 2019; 66: 9-21https://doi.org/10.1016/j.humov.2019.03.008
        • Ventura J.D.
        • Klute G.K.
        • Neptune R.R.
        The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading.
        Clin. Biomech. 2011; 26: 298-303https://doi.org/10.1016/j.clinbiomech.2010.10.003
        • Vrieling A.H.
        • van Keeken H.G.
        • Schoppen T.
        • Otten E.
        • Halbertsma J.P.
        • Hof A.L.
        • et al.
        Uphill and downhill walking in unilateral lower limb amputees.
        Gait Posture. 2008; 28: 235-242https://doi.org/10.1016/j.gaitpost.2007.12.006
        • Webber C.M.
        • Kaufman K.
        Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet.
        Prosthetics Orthot. Int. 2017; 41: 463-468https://doi.org/10.1177/0309364616683980
        • Wu A.R.
        • Simpson C.S.
        • van Asseldonk E.H.F.
        • van der Kooij H.
        • Ijspeert A.J.
        Mechanics of very slow human walking.
        Sci. Rep. 2019; 9: 18079https://doi.org/10.1038/s41598-019-54271-2
        • Zelik K.E.
        • Honert E.C.
        Ankle and foot power in gait analysis: implications for science, technology and clinical assessment.
        J. Biomech. 2018; 75: 1-12https://doi.org/10.1016/j.jbiomech.2018.04.017
        • Zelik K.E.
        • Collins S.H.
        • Adamczyk P.G.
        • Segal A.D.
        • Klute G.K.
        • Morgenroth D.C.
        • et al.
        Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.
        IEEE Trans. Neural Syst. Rehabil. Eng. 2011; 19: 411-419https://doi.org/10.1109/tnsre.2011.2159018