Influences of screw design features on initial stability in immediate implant placement and restoration

  • Min-Chieh Hsieh
    Affiliations
    School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan

    Department of Dentistry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
    Search for articles by this author
  • Chang-Hung Huang
    Affiliations
    School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan

    Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
    Search for articles by this author
  • Ming-Lun Hsu
    Correspondence
    Corresponding author at: School of Dentistry, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 11221, Taiwan.
    Affiliations
    School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Search for articles by this author

      Highlights

      • Initial implant stability is essential for successful immediate implant placement.
      • Implant fixtures that interlock with the bone influence initial implant stability.
      • Non–self-tapping implants had better initial stability.
      • Self-tapping implants had more efficient bone cutting during implant insertion.
      • Thread type and flute design have different resistance levels to lateral force.

      Abstract

      Background

      Self-tapping screws have been extensively used for dental implants. Their biomechanical behavior is highly associated with their clinical success, particularly for screws used for immediate implant placement and restoration, because occlusal forces can directly affect the loading transfer at the bone–implant interface after implantation. The effect of implant design on the initial stability of self-tapping screws remains unclear. This study explored the biomechanical behaviors of implant stability in standardized implants with different design features.

      Methods

      Six types of dental implants were designed using computer-aided design/computer-aided manufacturing technology, including three types of cutting flute shapes (spiral, straight, and non–self-tapping) combined with two types of screw features. Peak insertion torque values were first recorded; initial stability levels were subsequently evaluated in terms of the maximum force and resistance to lateral loads using an electrodynamic test system.

      Findings

      The peak insertion torque values, maximum force, and resistance to lateral loads of the non–self-tapping groups were higher than those of the self-tapping groups by 17%–90% (p < 0.01). The peak insertion torque values of the Straumann implant with a spiral flute was higher than that of the original straight flute by 20% (p < 0.001). However, compared with the original spiral flute, the Nobel Biocare implant with straight flute had a 23% higher maximum force (p = 0.016) and 24.5% higher resistance (p = 0.012) under lateral loading.

      Interpretation

      Changing the flute design would affect initial implant stability. Non–self-tapping implants exhibited superior initial stability than did self-tapping implants.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Atieh M.A.
        • Atieh A.H.
        • Payne A.G.
        • Duncan W.J.
        Immediate loading with single implant crowns: a systematic review and meta-analysis.
        Int. J. Prosthodont. 2009; 22: 378-387
        • Becker C.M.
        • Wilson Jr., T.G.
        • Jensen O.T.
        Minimum criteria for immediate provisionalization of single-tooth dental implants in extraction sites: a 1-year retrospective study of 100 consecutive cases.
        J. Oral Maxillofac. Surg. 2011; 69: 491-497https://doi.org/10.1016/j.joms.2010.10.024
      1. Benic, G. I., Mir-Mari, J., & Hammerle, C. H. (2014). Loading protocols for single-implant crowns: a systematic review and meta-analysis. Int. J. Oral Maxillofac. Implants, 29 Suppl, 222-238. Doi:10.11607/jomi.2014suppl.g4.1.

        • Chang P.K.
        • Chen Y.C.
        • Huang C.C.
        • Lu W.H.
        • Chen Y.C.
        • Tsai H.H.
        Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study.
        Int. J. Oral Maxillofac. Implants. 2012; 27: e96-101
        • Chen J.
        • Zhang Z.
        • Chen X.
        • Zhang C.
        • Zhang G.
        • Xu Z.
        Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.
        J. Prosthet. Dent. 2014; 112 (e1081): 1088-1095
        • Chowdhary R.
        • Jimbo R.
        • Thomsen C.
        • Carlsson L.
        • Wennerberg A.
        Biomechanical evaluation of macro and micro designed screw-type implants: an insertion torque and removal torque study in rabbits.
        Clin. Oral Implants Res. 2013; 24: 342-346https://doi.org/10.1111/j.1600-0501.2011.02336.x
        • Chowdhary R.
        • Halldin A.
        • Jimbo R.
        • Wennerberg A.
        Influence of Micro threads alteration on osseointegration and primary stability of implants: an FEA and in vivo analysis in rabbits.
        Clin. Implant. Dent. Relat. Res. 2015; 17: 562-569https://doi.org/10.1111/cid.12143
        • Deng F.
        • Zhang H.
        • Zhang H.
        • Shao H.
        • He Q.
        • Zhang P.
        A comparison of clinical outcomes for implants placed in fresh extraction sockets versus healed sites in periodontally compromised patients: a 1-year follow-up report.
        Int. J. Oral Maxillofac. Implants. 2010; 25: 1036-1040
        • Friberg B.
        • Grondahl K.
        • Lekholm U.
        A new self-tapping Branemark implant: clinical and radiographic evaluation.
        Int. J. Oral Maxillofac. Implants. 1992; 7: 80-85
        • Gallucci G.O.
        • Hamilton A.
        • Zhou W.
        • Buser D.
        • Chen S.
        Implant placement and loading protocols in partially edentulous patients: a systematic review.
        Clin. Oral Implants Res. 2018; 29: 106-134https://doi.org/10.1111/clr.13276
        • Gehrke S.A.
        • Pérez-Albacete Martínez C.
        • Piattelli A.
        • Shibli J.A.
        • Markovic A.
        • Calvo Guirado J.L.
        The influence of three different apical implant designs at stability and osseointegration process: experimental study in rabbits.
        Clin. Oral Implants Res. 2017; 28: 355-361https://doi.org/10.1111/clr.12807
        • Hsieh M.C.
        • Huang C.H.
        • Lin C.L.
        • Hsu M.L.
        Effect of implant design on the initial biomechanical stability of two self-tapping dental implants.
        Clin. Biomech. (Bristol, Avon). 2020; 74: 124-130https://doi.org/10.1016/j.clinbiomech.2020.02.012
      2. Kan, J. Y., Roe, P., & Rungcharassaeng, K. (2015). Effects of implant morphology on rotational stability during immediate implant placement in the esthetic zone. Int. J. Oral Maxillofac. Implants, 30(3), 667-670. Doi:10.11607/jomi.3885.

        • Kan J.Y.K.
        • Rungcharassaeng K.
        • Deflorian M.
        • Weinstein T.
        • Wang H.L.
        • Testori T.
        Immediate implant placement and provisionalization of maxillary anterior single implants.
        Periodontol. 2018; 77: 197-212https://doi.org/10.1111/prd.12212
        • Kao H.C.
        • Gung Y.W.
        • Chung T.F.
        • Hsu M.L.
        The influence of abutment angulation on micromotion level for immediately loaded dental implants: a 3-D finite element analysis.
        Int. J. Oral Maxillofac. Implants. 2008; 23: 623-630
        • Karl M.
        • Irastorza-Landa A.
        Does implant design affect primary stability in extraction sites?.
        Quintessence Int. 2017; 48: 219-224https://doi.org/10.3290/j.qi.a37690
        • Kim D.-R.
        • Lim Y.-J.
        • Kim M.-J.
        • Kwon H.-B.
        • Kim S.-H.
        Self-cutting blades and their influence on primary stability of tapered dental implants in a simulated low-density bone model: a laboratory study.
        Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011; 112: 573-580https://doi.org/10.1016/j.tripleo.2010.12.001
        • Kim Y.S.
        • Lim Y.J.
        Primary stability and self-tapping blades: biomechanical assessment of dental implants in medium-density bone.
        Clin. Oral Implants Res. 2011; 22: 1179-1184https://doi.org/10.1111/j.1600-0501.2010.02089.x
        • Lages F.S.
        • Douglas-de Oliveira D.W.
        • Costa F.O.
        Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis: a systematic review.
        Clin. Implant. Dent. Relat. Res. 2018; 20: 26-33https://doi.org/10.1111/cid.12565
        • Lekholm U.Z.
        Patient selection and preparation.
        in: Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence Publishing Co, Inc, Chicago1985
        • Ma P.
        • Xiong W.
        • Tan B.
        • Geng W.
        • Liu J.
        • Li W.
        • Li D.
        Influence of thread pitch, helix angle, and compactness on micromotion of immediately loaded implants in three types of bone quality: a three-dimensional finite element analysis.
        Biomed. Res. Int. 2014; 2014: 983103https://doi.org/10.1155/2014/983103
        • Malo P.
        • de Araujo Nobre M.
        • Lopes A.
        • Ferro A.
        • Gravito I.
        Single-tooth rehabilitations supported by dental implants used in an immediate-provisionalization protocol: report on long-term outcome with retrospective follow-up.
        Clin. Implant. Dent. Relat. Res. 2015; 17: e511-e519https://doi.org/10.1111/cid.12278
        • Menini M.
        • Bagnasco F.
        • Calimodio I.
        • Di Tullio N.
        • Delucchi F.
        • Baldi D.
        • Pera F.
        Influence of implant thread morphology on primary stability: a prospective clinical study.
        Biomed. Res. Int. 2020; 2020: 6974050https://doi.org/10.1155/2020/6974050
        • Morimoto T.
        • Tsukiyama Y.
        • Morimoto K.
        • Koyano K.
        Facial bone alterations on maxillary anterior single implants for immediate placement and provisionalization following tooth extraction: a superimposed cone beam computed tomography study.
        Clin. Oral Implants Res. 2015; 26: 1383-1389https://doi.org/10.1111/clr.12480
      3. Mosavar, A., Ziaei, A., & Kadkhodaei, M. (2015). The effect of implant thread design on stress distribution in anisotropic bone with different osseointegration conditions: a finite element analysis. Int. J. Oral Maxillofac. Implants, 30(6), 1317-1326. Doi:10.11607/jomi.4091.

        • Olsson M.
        • Friberg B.
        • Nilson H.
        • Kultje C.
        MkII--a modified self-tapping Branemark implant: 3-year results of a controlled prospective pilot study.
        Int. J. Oral Maxillofac. Implants. 1995; 10: 15-21
        • Ovesy M.
        • Indermaur M.
        • Zysset P.K.
        Prediction of insertion torque and stiffness of a dental implant in bovine trabecular bone using explicit micro-finite element analysis.
        J. Mech. Behav. Biomed. Mater. 2019; 98: 301-310https://doi.org/10.1016/j.jmbbm.2019.06.024
        • Sciasci P.
        • Casalle N.
        • Vaz L.G.
        Evaluation of primary stability in modified implants: analysis by resonance frequency and insertion torque.
        Clin. Implant. Dent. Relat. Res. 2018; https://doi.org/10.1111/cid.12574
        • Soballe K.
        • Hansen E.S.
        • Brockstedt-Rasmussen H.
        • Bunger C.
        Hydroxyapatite coating converts fibrous tissue to bone around loaded implants.
        J. Bone Joint Surg. (Br.). 1993; 75: 270-278
        • Søballe K.
        • Brockstedt-Rasmussen H.
        • Hansen E.S.
        • Bünger C.
        Hydroxyapatite coating modifies implant membrane formation.
        Acta Orthop. Scand. 2009; 63: 128-140https://doi.org/10.3109/17453679209154808
        • Szmukler-Moncler S.
        • Salama H.
        • Reingewirtz Y.
        • Dubruille J.H.
        Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature.
        J. Biomed. Mater. Res. 1998; 43: 192-203
        • Trisi P.
        • Perfetti G.
        • Baldoni E.
        • Berardi D.
        • Colagiovanni M.
        • Scogna G.
        Implant micromotion is related to peak insertion torque and bone density.
        Clin. Oral Implants Res. 2009; 20: 467-471https://doi.org/10.1111/j.1600-0501.2008.01679.x
        • Trisi P.
        • Berardini M.
        • Falco A.
        • Podaliri Vulpiani M.
        Validation of value of actual micromotion as a direct measure of implant micromobility after healing (secondary implant stability). An in vivo histologic and biomechanical study.
        Clin. Oral Implants Res. 2016, Jan 4; https://doi.org/10.1111/clr.12756. Epub 2016 Jan 4
        • Voumard B.
        • Maquer G.
        • Heuberger P.
        • Zysset P.K.
        • Wolfram U.
        Peroperative estimation of bone quality and primary dental implant stability.
        J. Mech. Behav. Biomed. Mater. 2019; 92: 24-32https://doi.org/10.1016/j.jmbbm.2018.12.035
        • Wakimoto M.
        • Matsumura T.
        • Ueno T.
        • Mizukawa N.
        • Yanagi Y.
        • Iida S.
        Bone quality and quantity of the anterior maxillary trabecular bone in dental implant sites.
        Clin. Oral Implants Res. 2012; 23: 1314-1319https://doi.org/10.1111/j.1600-0501.2011.02347.x
        • Wang T.M.
        • Lee M.S.
        • Wang J.S.
        • Lin L.D.
        The effect of implant design and bone quality on insertion torque, resonance frequency analysis, and insertion energy during implant placement in low or low- to medium-density bone.
        Int. J. Prosthodont. 2015; 28: 40-47https://doi.org/10.11607/ijp.4063
        • Wentaschek S.
        • Scheller H.
        • Schmidtmann I.
        • Hartmann S.
        • Weyhrauch M.
        • Weibrich G.
        • Lehmann K.M.
        Sensitivity and specificity of stability criteria for immediately loaded splinted maxillary implants.
        Clin. Implant. Dent. Relat. Res. 2015; 17: e542-e549https://doi.org/10.1111/cid.12283
        • Wu J.C.
        • Chen C.S.
        • Yip S.W.
        • Hsu M.L.
        Stress distribution and micromotion analyses of immediately loaded implants of varying lengths in the mandible and fibular bone grafts: a three-dimensional finite element analysis.
        Int. J. Oral Maxillofac. Implants. 2012; 27: e77-e84
        • Wu S.W.
        • Lee C.C.
        • Fu P.Y.
        • Lin S.C.
        The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants.
        Med. Eng. Phys. 2012; 34: 797-805https://doi.org/10.1016/j.medengphy.2011.09.021
        • Yao K.T.
        • Chang T.Y.
        • Fang H.W.
        • Huang C.H.
        • Wang D.H.
        • Hsu M.L.
        Abutment screw withdrawal after conical abutment settlement: a pilot study.
        Clin. Oral Implants Res. 2020; 31: 144-152https://doi.org/10.1111/clr.13550
        • Zafiropoulos G.G.
        • Deli G.
        • Bartee B.K.
        • Hoffmann O.
        Single-tooth implant placement and loading in fresh and regenerated extraction sockets. Five-year results: a case series using two different implant designs.
        J. Periodontol. 2010; 81: 604-615https://doi.org/10.1902/jop.2009.090316