Advertisement

Role of nasal vestibule morphological variations on olfactory airflow dynamics

  • Ryan M. Sicard
    Affiliations
    Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA
    Search for articles by this author
  • Dennis O. Frank-Ito
    Correspondence
    Corresponding author at: Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, 40 Duke Medicine Circle, DUMC Box 3805, Durham, NC 27710, USA.
    Affiliations
    Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA

    Computational Biology & Bioinformatics PhD Program, Duke University, Durham, NC, USA

    Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
    Search for articles by this author

      Highlights

      • Differences in nasal vestibule morphology affects olfactory airflow and resistance.
      • Olfactory cleft airflow volume was highest in Standard nasal vestibule phenotype.
      • Patients with identical phenotype on both sides have lower olfactory resistance.

      Abstract

      Background

      The conductive mechanisms of olfaction are typically given little priority in the evaluation of olfactory function. The objective of this study is to investigate the role of nasal vestibule morphological variations on airflow volume at the olfactory recess in healthy subjects.

      Methods

      Anatomically realistic three-dimensional nasal airway models were constructed from computed tomography scans in five subjects. Each individual's unilateral nasal cavity (10 total) was classified according to the shape of their nasal vestibule: Standard, Notched, or Elongated. Nasal airflow simulations were performed using computational fluid dynamics modeling at two inspiratory flow rates (15 L/min and 30 L/min) to reflect resting and moderate breathing rates. Olfactory airflow volume and cross-sectional flow resistance were computed.

      Findings

      Average olfactory airflow volumes (and percent airflow in olfactory) were: 0.25 L/min to 0.64 L/min (3.0%–7.7%; 15 L/min simulations) and 0.53 L/min to 1.30 L/min (3.2%–7.8%; 30 L/min simulations) for Standard; 0.13 L/min – 0.47 L/min (2.0%–6.8%; 15 L/min simulations) and 0.06 L/min – 0.82 L/min (1.7%–6.1%; 30 L/min simulations) for Notched; and 0.07 L/min – 0.39 L/min (1.2%–5.4%; 15 L/min simulations) and 0.30 L/min – 0.99 L/min (2.1%–6.7%; 30 L/min simulations) for Elongated. On average, relative difference in olfactory resistance between left and right sides was 141.5% for patients with different unilateral phenotypes and 82.2% for patients with identical unilateral phenotype.

      Interpretation

      Olfactory cleft airflow volume was highest in the Standard nasal vestibule phenotype, followed by Notched phenotype for 15 L/min simulations and Elongated phenotype for 30 L/min simulations. Further, intra-patient variation in olfactory cleft airflow resistance differs greatly for patients with different unilateral phenotypes compared to patients with identical unilateral phenotype.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Babatola F.D.
        Nasal resistance values in the adult Negroid Nigerian.
        Rhinology. 1990; 28: 269-273
        • Basu S.
        • Frank-Ito D.O.
        • Kimbell J.S.
        On computational fluid dynamics models for sinonasal drug transport: relevance of nozzle subtraction and nasal vestibular dilation.
        Int. J. Numer. Meth. Biomed. Eng. 2018; 34e2946
        • Borojeni A.A.
        • Garcia G.J.
        • Moghaddam M.G.
        • et al.
        Normative ranges of nasal airflow variables in healthy adults.
        Int. J. Comput. Assist. Radiol. Surg. 2020; 15: 87-98
        • Britto R.R.
        • Zampa C.C.
        • De Oliveira T.A.
        • Prado L.F.
        • Parreira V.F.
        Effects of the aging process on respiratory function.
        Gerontology. 2009; 55: 505-510
        • Buschhüter D.
        • Smitka M.
        • Puschmann S.
        • et al.
        Correlation between olfactory bulb volume and olfactory function.
        Neuroimage. 2008; 42: 498-502
        • Calhoun K.H.
        • House W.
        • Hokanson J.A.
        • Quinn F.B.
        Normal nasal airway-resistance in noses of different sizes and shapes.
        Otolaryngol. Head Neck Surg. 1990; 103: 605-609
        • Churchill S.E.
        • Shackelford L.L.
        • Georgi J.N.
        • Black M.T.
        Morphological variation and airflow dynamics in the human nose.
        Am. J. Hum. Biol. 2004; 16: 625-638
        • Craven B.A.
        • Neuberger T.
        • Paterson E.G.
        • et al.
        Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow.
        Anat. Rec. 2007; 290: 1325-1340
        • Crognier E.
        Climate and anthropometric variations in Europe and the Mediterranean area.
        Ann. Hum. Biol. 1981; 8: 99-107
        • Davies A.
        A re-survey of the morphology of the nose in relation to climate.
        J R Anthropol. Inst. G. 1932; 62: 337-359
        • Doddi N.M.
        • Eccles R.
        The relationship between nasal index and nasal airway resistance, and response to a topical decongestant.
        Rhinology. 2011; 49: 583-586
        • Dong J.
        • Ma J.
        • Shang Y.
        • et al.
        Detailed nanoparticle exposure analysis among human nasal cavities with distinct vestibule phenotypes.
        J. Aerosol Sci. 2018; 121: 54-65
        • Doty R.L.
        Handbook of Olfaction and Gustation.
        John Wiley & Sons, 2015
        • Eccles R.
        A role for the nasal cycle in respiratory defence.
        Eur. Respir. J. 1996; 9: 371-376
        • Eiting T.P.
        • Smith T.D.
        • Perot J.B.
        • Dumont E.R.
        The role of the olfactory recess in olfactory airflow.
        J. Exp. Biol. 2014; 217: 1799-1803
        • Eiting T.P.
        • Perot J.B.
        • Dumont E.R.
        How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats.
        Proc. Biol. Sci. 2015; 282: 20142161
        • Enright P.L.
        • Adams A.B.
        • Boyle P.J.
        • Sherrill D.L.
        Spirometry and maximal respiratory pressure references from healthy Minnesota 65-to 85-year-old women and men.
        CHEST J. 1995; 108: 663-669
        • Frank-Ito D.O.
        • Garcia G.
        Clinical implications of nasal airflow simulations.
        in: Clinical and Biomedical Engineering in the Human Nose. Springer, 2020: 157-192
        • Frank-Ito D.O.
        • Wofford M.
        • Schroeter J.D.
        • Kimbell J.S.
        Influence of mesh density on airflow and particle deposition in sinonasal airway modeling.
        J. Aerosol. Med. Pulm. Drug Deliv. 2016; 29: 46-56https://doi.org/10.1089/jamp.2014.1188
        • Gambaruto A.M.
        • Taylor D.J.
        • Doorly D.J.
        Decomposition and description of the nasal cavity form.
        Ann. Biomed. Eng. 2012; 40: 1142-1159
        • Ghalichi F.
        • Deng X.
        • De Champlain A.
        • Douville Y.
        • King M.
        • Guidoin R.
        Low Reynolds number turbulence modeling of blood flow in arterial stenoses.
        Biorheology. 1998; 35: 281-294
        • Guilmette R.A.
        • Cheng Y.S.
        • Griffith W.C.
        Characterising the variability in adult human nasal airway dimensions.
        Ann. Occup. Hyg. 1997; 41: 491-496
        • Hazeri M.
        • Farshidfar Z.
        • Faramarzi M.
        • Sadrizadeh S.
        • Abouali O.
        Details of the physiology of the aerodynamic and heat and moisture transfer in the normal nasal cavity.
        Respir. Physiol. Neurobiol. 2020; 280: 103480
        • Hiernaux J.
        • Froment A.
        Correlations between anthropo-biological and climatic variables in sub-Saharan Africa - revised estimates.
        Hum. Biol. 1976; 48: 757-767
        • Holbrook E.H.
        • Wu E.
        • Curry W.T.
        • Lin D.T.
        • Schwob J.E.
        Immunohistochemical characterization of human olfactory tissue.
        Laryngoscope. 2011; 121: 1687-1701
        • Inthavong K.
        • Ma J.
        • Shang Y.
        • et al.
        Geometry and airflow dynamics analysis in the nasal cavity during inhalation.
        Clin. Biomech. 2019; 66: 97-106
        • Keeler J.A.
        • Patki A.
        • Woodard C.R.
        • Frank-Ito D.O.
        A computational study of nasal spray deposition pattern in four ethnic groups.
        J. Aerosol. Med. Pulm. Drug Deliv. 2016; 29: 153-166
        • Keyhani K.
        • Scherer P.W.
        • Mozell M.M.
        Numerical simulation of airflow in the human nasal cavity.
        J. Biomech. Eng. 1995; 117: 429-441
        • Keyhani K.
        • Scherer P.W.
        • Mozell M.M.
        A numerical model of nasal odorant transport for the analysis of human olfaction.
        J. Theor. Biol. 1997; 186: 279-301
        • Kim S.K.
        • Heo G.E.
        • Seo A.
        • Na Y.
        • Chung S.K.
        Correlation between nasal airflow characteristics and clinical relevance of nasal septal deviation to nasal airway obstruction.
        Respir. Physiol. Neurobiol. 2014; 192: 95-101
        • Klimek L.
        Sense of smell in allergic rhinitis.
        Pneumologie. 1998; 52: 196-202
        • Leong S.C.
        • Eccles R.
        A systematic review of the nasal index and the significance of the shape and size of the nose in rhinology.
        Clin. Otolaryngol. 2009; 34: 191-198
        • Leopold D.A.
        • Hummel T.
        • Schwob J.E.
        • Hong S.C.
        • Knecht M.
        • Kobal G.
        Anterior distribution of human olfactory epithelium.
        Laryngoscope. 2000; 110: 417-421
        • Loftus P.A.
        • Wise S.K.
        • Nieto D.
        • Panella N.
        • Aiken A.
        • DelGaudio J.M.
        Intranasal volume increases with age: computed tomography volumetric analysis in adults.
        Laryngoscope. 2016; 126: 2212-2215
        • Ma J.
        • Dong J.
        • Shang Y.
        • Inthavong K.
        • Tu J.
        • Frank-Ito D.O.
        Air conditioning analysis among human nasal passages with anterior anatomical variations.
        Med. Eng. Phys. 2018; 57: 19-28
        • Menter F.R.
        Two-equation eddy-viscosity turbulence models for engineering applications.
        AIAA J. 1994; 32: 1598-1605
        • Menter F.R.
        Review of the shear-stress transport turbulence model experience from an industrial perspective.
        Int. J. Comput. Fluid Dyn. 2009; 23: 305-316
        • Noback M.L.
        • Harvati K.
        • Spoor F.
        Climate-related variation of the human nasal cavity.
        Am. J. Phys. Anthropol. 2011; 145: 599-614
        • Ohki M.
        • Naito K.
        • Cole P.
        Dimensions and resistances of the human nose - racial-differences.
        Laryngoscope. 1991; 101: 276-278
        • Paik S.I.
        • Lehman M.N.
        • Seiden A.M.
        • Duncan H.J.
        • Smith D.V.
        Human olfactory biopsy: the influence of age and receptor distribution.
        Arch. Otolaryngol. Head Neck Surg. 1992; 118: 731-738
        • Patel R.G.
        • Garcia G.J.
        • Frank-Ito D.O.
        • Kimbell J.S.
        • Rhee J.S.
        Simulating the nasal cycle with computational fluid dynamics.
        Otolaryngol. Head Neck Surg. 2015; 152: 353-360
        • Patki A.
        • Frank-Ito D.O.
        Characterizing human nasal airflow physiologic variables by nasal index.
        Respir. Physiol. Neurobiol. 2016; 232: 66-74
        • Polkey M.I.
        • Harris M.L.
        • Hughes P.D.
        • et al.
        The contractile properties of the elderly human diaphragm.
        Am. J. Respir. Crit. Care Med. 1997; 155: 1560-1564
        • Ramprasad V.H.
        • Frank-Ito D.O.
        A computational analysis of nasal vestibule morphologic variabilities on nasal function.
        J. Biomech. 2016; 49: 450-457
        • Segal R.A.
        • Kepler G.M.
        • Kimbell J.S.
        Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest.
        Ann. Biomed. Eng. 2008; 36: 1870-1882
        • Sidlof P.
        • Zorner S.
        Computational aeroacoustics of human phonation.
        Epj Web. Conf. 2013; 45
        • Soler Z.M.
        • Pallanch J.F.
        • Sansoni E.R.
        • et al.
        Volumetric computed tomography analysis of the olfactory cleft in patients with chronic rhinosinusitis.
        Int. Forum Allergy Rhinol. 2015; : 846-854
        • Subramaniam R.P.
        • Richardson R.B.
        • Morgan K.T.
        • Guilmette R.A.
        • Kimbell J.S.
        Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx.
        Inhal. Toxicol. 1998; 10: 91-120
        • Thomson A.
        • Buxton L.H.D.
        Man’s nasal index in relation to certain climatic conditions.
        J R Anthropol. Inst. G. 1923; 53: 92-122
        • Van Doormaal J.P.
        • Raithby G.D.
        Enhancements of the SIMPLE method for predicting incompressible fluid flows.
        Numer. Heat Transf. 1984; 7: 147-163
        • Wang Y.
        • Liu Y.
        • Sun X.
        • Yu S.
        • Gao F.
        Numerical analysis of respiratory flow patterns within human upper airway.
        Acta Mech. Sinica. 2009; 25: 737
        • Watsford M.L.
        • Murphy A.J.
        • Pine M.J.
        The effects of ageing on respiratory muscle function and performance in older adults.
        J. Sci. Med. Sport. 2007; 10: 36-44
        • Weiner J.S.
        Nose shape and climate.
        Am. J. Phys. Anthrop.-Ne. 1954; 12: 615-618
        • Weinhold I.
        • Mlynski G.
        Numerical simulation of airflow in the human nose.
        Eur. Archiv. Oto-Rhino-Laryngol. Head & Neck. 2004; 261: 452-455
        • Wen J.
        • Inthavong K.
        • Tu J.
        • Wang S.M.
        Numerical simulations for detailed airflow dynamics in a human nasal cavity.
        Respir. Physiol. Neurobiol. 2008; 161: 125-135
        • Wilcox D.C.
        Turbulence Modeling for CFD.
        DCW Industries La Canada, CA1998
        • Wolpoff M.H.
        Climatic influence on the skeletal nasal aperture.
        Am. J. Phys. Anthropol. 1968; 29: 405-423
        • Yokley T.R.
        Ecogeographic variation in human nasal passages.
        Am. J. Phys. Anthropol. 2009; 138: 11-22
        • Yousem D.M.
        • Geckle R.J.
        • Bilker W.B.
        • Doty R.L.
        Olfactory bulb and tract and temporal lobe volumes: normative data across decadesa.
        Ann. N. Y. Acad. Sci. 1998; 855: 546-555
        • Zhao K.
        • Frye R.E.
        Nasal patency and the aerodynamics of nasal airflow in relation to olfactory function.
        in: Handbook of Olfaction and Gustation. Wiley-Blackwell, Hoboken, NJ2015: 353-374
        • Zhao K.
        • Jiang J.B.
        What is normal nasal airflow? A computational study of 22 healthy adults.
        Int. Forum. Allergy Rh. 2014; 4: 435-446
        • Zhao K.
        • Scherer P.W.
        • Hajiloo S.A.
        • Dalton P.
        Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction.
        Chem. Senses. 2004; 29: 365-379
        • Zhu J.H.
        • Lee H.P.
        • Lim K.M.
        • Lee S.J.
        • Wang D.Y.
        Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation.
        Respir. Physiol. Neurobiol. 2011; 175: 62-69