Advertisement

Biomechanics applied to incisional hernia repair – Considering the critical and the gained resistance towards impacts related to pressure

  • F. Kallinowski
    Correspondence
    Correspondence author at: Senior Surgeon, Hernia Center, General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Department of Surgery, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany.
    Affiliations
    General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany

    General and Visceral Surgery, GRN Hospital Eberbach, Scheuerbergstrasse 3, 69412 Eberbach, Germany
    Search for articles by this author
  • Y. Ludwig
    Affiliations
    General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
    Search for articles by this author
  • T. Löffler
    Affiliations
    General and Visceral Surgery, GRN Hospital Eberbach, Scheuerbergstrasse 3, 69412 Eberbach, Germany
    Search for articles by this author
  • M. Vollmer
    Affiliations
    Hamburg University of Technology, Biomechanics, Denickestrasse 15, 21073 Hamburg, Germany
    Search for articles by this author
  • P.D. Lösel
    Affiliations
    Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

    Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
    Search for articles by this author
  • S. Voß
    Affiliations
    Department of Fluid Dynamics and Technical Flows, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

    Research Campus STIMULATE, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
    Search for articles by this author
  • J. Görich
    Affiliations
    Radiological Center, Kellereistrasse 32-34, 69412 Eberbach, Germany
    Search for articles by this author
  • V. Heuveline
    Affiliations
    Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

    Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany

    Heidelberg University Computing Centre (URZ), Im Neuenheimer Feld 293, 69120 Heidelberg, Germany
    Search for articles by this author
  • R. Nessel
    Affiliations
    General, Visceral and Pediatric Surgery, Klinikum Am Gesundbrunnen, Am Gesundbrunnen 20-26, s Heilbronn, Germany
    Search for articles by this author

      Highlights

      • Reconstructions of incisional hernias can be improved on a biomechanical basis.
      • All elements of an incisional hernia repair can be characterized with a bench test.
      • The biomechanical requirements were adapted to the individual tissue elasticity.
      • A new surgical strategy considers the gained resistance to impacts related to pressure.
      • Patients treated with this strategy show no recurrences and reduced pain levels after one year.

      Abstract

      Background

      Incisional hernia repair is burdened with recurrence, pain and disability. The repair is usually carried out with a textile mesh fixed between the layers of the abdominal wall.

      Methods

      We developed a bench test with low cyclic loading. The test uses dynamic intermittent strain resembling coughs. We applied preoperative computed tomography of the abdomen at rest and during Valsalva's maneuver to the individual patient to analyze tissue elasticity.

      Findings

      The mesh, its placements and overlap, the type and distribution of fixation elements, the elasticity of the tissue of the individual and the closure of the abdominal defect–all aspects influence the reconstruction necessary. Each influence can be attributed to a relative numerical quantity which can be summed up into a characterizing value. The elasticity of the tissues within the abdominal wall of the individual patient can be assessed with low-dose computed tomography of the abdomen with Valsalva's maneuver. We established a procedure to integrate the results into a surgical concept. We demonstrate potential computer algorithms using non-rigid b-spline registration and artificial intelligence to further improve the evaluation process.

      Interpretation

      The bench test yields relative values for the characterization of hernia, mesh and fixation. It can be applied to patient care using established procedures. The clinical application in the first ninety-six patients shows no recurrences and reduced pain levels after one year. The concept has been spread to other surgical groups with the same results in another fifty patients. Future efforts will make the abdominal wall reconstruction more predictable.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ai D.
        • Liu D.
        • Wang Y.
        • Fu T.
        • Huang Y.
        • Jiang Y.
        • Song H.
        • Wang Y.
        • Liang P.
        • Yang J.
        Non-rigid registration for tracking incompressible soft tissues with sliding motion.
        Med. Phys. 2019; 46: 4923-4939https://doi.org/10.1002/mp.13694
        • Bellio G.
        • Cipolat Mis T.
        • Del Giudice R.
        • Munegato G.
        Preoperative abdominal computed tomography at rest and during Valsalva’s maneuver to evaluate incisional hernias.
        Surg. Innov. 2019; 26: 519-527https://doi.org/10.1177/1553350619849986
        • Bustamante-Orellana C.
        • Guachi R.
        • Guachi-Guachi L.
        • Novelli S.
        • Campana F.
        • Bini F.
        • Marinozzi F.
        Biomechanics of soft tissues: the role of the mathematical model on material behavior. 2020.
        in: Botto-Tobar M. León-Acurio J. Cadena A.D. Diaz P.M. Advances in Emerging Trends and Technologies. vol. 1. ICAETT, 2019: 301-311https://doi.org/10.1007/978-3-030-32022-5_29 (AISC 1066)
        • Butler C.E.
        • Baumann D.P.
        • Janis J.E.
        • Rosen M.J.
        Abdominal wall reconstruction.
        Curr. Probl. Surg. 2013; 50: 557-586https://doi.org/10.1067/j.cpsurg.2013.08.003
        • Chanda A.
        • Ruchti T.
        • Upchurch W.
        Biomechanical modeling of prosthetic mesh and human tissue surrogate interaction.
        Biomimetics. 2018; 3: 27https://doi.org/10.3390/biomimetics3030027
        • Clément R.
        • Dehapiot B.
        • Collinet C.
        • Lecuit T.
        • Lenne P.F.
        Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis.
        Curr. Biol. 2017; 27: P3132-P3142https://doi.org/10.1016/j.cub.2017.09.005
        • Cobb W.S.
        • Burns J.M.
        • Kercher K.W.
        • Matthews B.D.
        • Norton H.J.
        • Heniford T.B.
        Normal intraabdominal pressure in healthy adults.
        J. Surg. Res. 2005; 129: 231-235https://doi.org/10.1016/j.jss.2005.06.015
        • Cordero A.
        • Hernandez-Gascon B.
        • Pascual G.
        • Bellon J.M.
        • Calvo B.
        • Pena E.
        Biaxial mechanical evaluation of absorbable and nonabsorbable synthetic surgical meshes used for hernia repair: physiological loads modify anisotropic response.
        Ann. Biomed. Eng. 2016; 44: 2181-2188https://doi.org/10.1007/s10439-015-1503-4
        • Deeken C.R.
        • Lake S.P.
        Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair.
        J. Mech. Behav. Biomed. Mater. 2017; 74: 411-427https://doi.org/10.1016/j.jmbbm.2017.05.008
        • Dietz U.A.
        • Menzel S.
        • Lock J.
        • Wiegering A.
        The treatment of incisional hernia.
        Dtsch. Ärzteblatt. Int. 2018; 115: 31-37https://doi.org/10.3238/arztebl.2018.0031
        • DuBay D.A.
        • Wang X.
        • Adamson B.
        • Kuzon Jr., W.M.
        • Dennis R.G.
        Franz, Mesh incisional herniorrhaphy increases abdominal wall elastic properties: A mechanism for decreased hernia recurrences in comparison with suture repair.
        Surgery. 2006; 140: 14-24https://doi.org/10.1016/j.surg.2006.01.007
        • East B.
        • Plencner M.
        • Otahal M.
        • Amler E.
        • de Beaux A.C.
        Dynamic creep properties of a novel nanofiber hernia mesh in abdominal wall repair.
        Hernia. 2019; 23: 1009-1015https://doi.org/10.1007/s10029-019-01940-w
        • Fung Y.C.
        Biomechanics: Mechanical Properties of Living Tissues.
        Springer Science & Business Media, New York2013https://doi.org/10.1007/978-1-4757-2257-4
        • Gutjahr D.
        • Nessel R.
        • Kallinowski F.
        Erhöhung der Stabilität des Netz-Verschlusses bei Bauchwand-Hernien.
        • Hernández-Gascón B.
        • Peña E.
        • Grasa J.
        • Pascual G.
        • Bellón J.M.
        • Calvo B.
        Mechanical response of the herniated human abdomen to the placement of different prostheses.
        J. Biomech. Eng. 2013; 135: 51004https://doi.org/10.1115/1.4023703
        • Holihan J.L.
        • Li L.T.
        • Askenasy E.P.
        • Greenberg J.A.
        • Keith J.N.
        • Martindale R.G.
        • Roth J.S.
        • Liang M.K.
        Ventral hernia outcomes collaborative. Analysis of model development strategies: predicting ventral hernia recurrence.
        J. Surg. Res. 2016; 206: 159-167https://doi.org/10.1016/j.jss.2016.07.042
        • Homan J.
        Common mistakes in fatigue analysis.
        (URL)
        • Kallinowski F.
        • Baumann E.
        • Harder F.
        • Siassi M.
        • Mahn A.
        • Vollmer M.
        • Morlock M.M.
        Dynamic intermittent strain can rapidly impair ventral hernia repair.
        Biom. J. 2015; 48: 4026-4036https://doi.org/10.1016/j.jbiomech.2015.09.045i
        • Kallinowski F.
        • Harder F.
        • Silva T.G.
        • Mahn A.
        • Vollmer M.
        • Morlock M.M.
        Bridging with reduced overlap: fixation and peritoneal grip can prevent slippage of DIS class a meshes.
        Hernia. 2017; 21: 455-467https://doi.org/10.1007/s10029-017-1583-1
        • Kallinowski F.
        • Harder F.
        • Gutjahr D.
        • Raschidi R.
        • Silva T.G.
        • Vollmer M.
        • Nessel R.
        Assessing the GRIP of ventral hernia repair: how to securely fasten DIS classified meshes.
        Front. Surg. 2018; 4: 78https://doi.org/10.3389/fsurg.2017.00078
        • Kallinowski F.
        • Gutjahr D.
        • Vollmer M.
        • Harder F.
        • Nessel R.
        Increasing hernia size requires higher GRIP values for a biomechanically stable ventral repair.
        Ann. Med. Surg. 2019; 42: 1-6https://doi.org/10.1016/j.amsu.2019.04.002
        • Kallinowski F.
        • Nessel R.
        • Goerich J.
        • Grimm A.
        • Löffler T.
        CT abdomen with Valsalva’s maneuver facilitates grip-based incisional hernia repair.
        J. Abd. Wall Reconst. 2020; 2: 1006
        • Köckerling F.
        Recurrent incisional hernia repair – an overview.
        Front Surg. 2019; 6: 26https://doi.org/10.3389/fsurg.2019.00026
        • Köhler G.
        Präoperative Konditionierung und operative Strategien zur Therapie komplexer Bauchwandhernien.
        Chirurg. 2020; 91: 134-142https://doi.org/10.1007/s00104-019-01027-3
        • König J.A.
        Theory of shakedown of elastic-plastic structures.
        Arch. Mech. Stos. 1966; 18: 227-238
        • König J.A.
        Shakedown of elastic-plastic structures. Elsevier Warszawa, 1987.
        Fund. Stud. Eng. 1987; 7 (ISBN 0-444-98979-7): 1-196
        • Kroy K.
        The inelastic hierarchy: multiscale biomechanics of weak bonds.
        Biophys. J. 2016; 111: 898-899https://doi.org/10.1016/j.bpj.2016.07.041
        • LeBlanc K.
        Proper mesh overlap is a key determinant in hernia recurrence following laparoscopic ventral and incisional hernia repair.
        Hernia. 2016; 20: 85-99https://doi.org/10.1007/s10029-015-1399-9
        • Lubowieckaa I.
        • Tomaszewskaa A.
        • Szepietowskaa K.
        • Szymczakb C.
        • Śmietańskic M.
        In vivo performance of intraperitoneal onlay mesh after ventral hernia repair.
        Clin. Biomech. 2020; 78: 105076https://doi.org/10.1016/j.clinbiomech.2020.105076
        • Maurer M.M.
        • Röhrnbauer B.
        • Feola A.
        • Deprest J.
        • Mazza E.
        Prosthetic meshes for repair of hernia nad pelvic organ prolapse: comparison of biomechanical properties.
        Materials. 2015; 8: 2794-2808https://doi.org/10.3390/ma8052794
        • Münster S.
        • Jawerth L.M.
        • Leslie B.A.
        • Weitz J.I.
        • Fabry B.
        • Weitz D.A.
        Strain history dependence of the nonlinear stress response of fibrin and collagen networks.
        PNAS. 2013; 110: 12197-12202
        • Nakano K.
        • Popov V.L.
        Dynamic Stiction Mode by Friction Vector Rotation.
        • Nessel R.
        • Lozanovski V.
        • Rinn J.
        • Löffler T.
        • Kallinowski F.
        Biomechanically stable repairs of ventral hernias result in low recurrence and low pain levels after one year.
        Hernia. 2020; 24 (P038-S53)
        • Nielsen M.F.
        • de Beaux A.
        • Tulloh B.
        Peritoneal flap hernioplasty for reconstruction of large ventral hernias: long-term outcome in 251 patients.
        World J. Surg. 2019; 43: 2157-2163https://doi.org/10.1007/s00268-019-05011-0
        • Petersson P.
        • Montgomery A.
        • Petersson U.
        Modified peritoneal flap hernioplasty versus retromuscular technique for incisional hernia repair: a retrospective cohort study.
        Scand. J. Surg. 2019; 21: 1-10https://doi.org/10.1177/1457496919863943
        • Reinpold W.
        • Schröder M.
        • Berger C.
        • Nehls J.
        • Schröder A.
        • Hukauf M.
        • Köckerling F.
        • Bittner R.
        Mini- or less-open sublay operation (MILOS): a new minimally invasive technique for the extraperitoneal mesh repair of incisional hernias.
        Ann. Surg. 2019; 269: 748-755https://doi.org/10.1097/SLA.0000000000002661
        • Scheiber C.J.
        • Kurapaty S.S.
        • Goldman S.M.
        • Dearth C.L.
        • Liacouras P.C.
        • Souza J.M.
        Suturable mesh resists early laparotomy failure in a cyclic ball-burst model.
        Hernia. 2020; 24: 559-565https://doi.org/10.1007/s10029-020-02133-6
        • Shussmann N.
        • Appelbaum L.
        • Marom G.
        • Luques L.
        • Elazary R.
        • Abu-Gazala M.
        • Pikarsky A.J.
        • Mintz Y.
        Changes in abdominal wall thickness during laparoscopy: implications for the use of magnetic assisted surgery.
        Min. Invasive Ther. Allied Technol. 2018; 27: 321-326https://doi.org/10.1080/13645706.2018.1457543
        • Siassi M.
        • Mahn A.
        • Baumann E.
        • Vollmer M.
        • Huber G.
        • Morlock M.
        • Kallinowski F.
        Development of a dynamic model for ventral hernia mesh repair.
        Langenbeck’s Arch. Surg. 2014; 399: 857-862https://doi.org/10.1007/s00423-014-1239-x
        • Slater N.J.
        • Montgomery A.
        • Berrevoet F.
        • Carbonell A.M.
        • Chang A.
        • Franklin M.
        • Kercher K.W.
        • Lammers B.J.
        • Parra-Davilla E.
        • Roll S.
        • Towfigh S.
        • van Geffen E.
        • Conze J.
        • van Goor H.
        Criteria for definition of a complex abdominal wall hernia.
        Hernia. 2014; 18: 7-17https://doi.org/10.1007/s10029-013-1168-6
        • Spinou A.
        • Birring S.S.
        An update on measurement and monitoring of cough: what are the important study endpoints?.
        J. Thorac. Dis. 2014; 6: S728-S734https://doi.org/10.3978/j.issn.2072-1439.2014.10.08
        • Stover A.M.
        • Haverman L.
        • van Oers H.A.
        • Greenhalgh J.
        • Potter C.M.
        • on behalf of the ISOQOL PROMs/PREMs
        Using an implementation science approach to implement and evaluate patient-reported outcome measures (PROM) initiatives in routine care settings.
        Qual. Life Res. 2020; https://doi.org/10.1007/s11136-020-02564-9
        • Susilo M.E.
        • Paten J.A.
        • Sander E.A.
        • Nguyen T.D.
        • Ruberti J.W.
        Collagen network strengthening following cyclic tensile loading.
        Interf. Focus. 2015; 620150088https://doi.org/10.1098/rsfs.2015.0088
        • Todros S.
        • de Cesare N.
        • Pianigiani S.
        • Concheri G.
        • Savio G.
        • Natali A.N.
        • Pavan P.G.
        3D surface imaging of abdominal wall muscular contraction.
        Comput. Methods Prog. Biomed. 2019; 175: 103-109https://doi.org/10.1016/j.cmpb.2019.04.013
        • Todros S.
        • de Cesare N.
        • Concheri G.
        • Natali A.N.
        • Pavan P.G.
        Numerical modelling of abdominal wall mechanics: the role of muscular contraction and intra-abdominal pressure.
        J. Mech. Behav. Biomed. Mater. 2020; 103: 103578https://doi.org/10.1016/j.jmbbm.2019.103578
        • Tulloh B.
        • de Beaux A.
        Defects and donuts: the importance of the mesh: defect area ratio.
        Hernia. 2016; 20: 893-895https://doi.org/10.1007/s10029-016-1524-4
        • Voß S.
        • Lösel P.D.
        • Saalfeld S.
        • Berg P.
        • Heuveline V.
        • Kallinowski F.
        Automated incisional hernia characterization by non-rigid registration of CT images – a pilot study.
        Curr. Dir. Biomed. Eng. 2020; (BMT 2020: Notification Conference Paper review 1570637878). shttps://doi.org/10.1515/cdbme-2020-XXXX
        • Walming S.
        • Angenete E.
        • Block M.
        • Bock Gessler B.
        • Haglind E.
        Retrospective review of risk factors for surgical wound dehiscence and incisional hernia.
        BMC Surg. 2017; 17: 19https://doi.org/10.1186/s12893-017-0207-0
        • Weissler J.M.
        • Lanni M.A.
        • Tecce M.G.
        • Carney M.J.
        • Shubinets V.
        • Fischer J.P.
        Chemical component separation: a systematic review and meta-analysis of botulinum toxin for management of ventral hernia.
        J. Plastic Surg. Hand Surg. 2017; 51: 366-374https://doi.org/10.1080/2000656X.2017.1285783
        • Zhang L.
        • Lake S.P.
        • Lai V.K.
        • Picu C.R.
        • Barocas V.H.
        • Shephard M.S.
        A coupled fiber-matrix model demonstrates highly inhomogeneous microstructural interactions in soft tissues under tensile load.
        J. Biomech. Eng. 2013; 135011008https://doi.org/10.1115/1.4023136
        • Zucker B.E.
        • Simillis C.
        • Tekkis P.
        • Kontovounisios C.
        Suture choice to reduce occurence of surgical site infection, hernia, wound dehiscence and sinus/fistula: a network meta-analysis.
        Ann. R. Coll. Surg. Engl. 2019; 101: 150-161https://doi.org/10.1308/rcsann.2018.0170