Non-locking screw insertion: No benefit seen if tightness exceeds 80% of the maximum torque


      • No significant further compression generated beyond 80% of the maximum torque.
      • Pullout force unaffected by variations in sub-maximal screw tightness.
      • Stripping limits of screw holes can be reliably predicted prior to insertion.



      Millions of non-locking screws are manually tightened during surgery each year, but their insertion frequently results in overtightening and damage to the surrounding bone. We postulated that by calculating the torque limit of a screw hole, using bone and screw properties, the risk of overtightening during screw insertion could be reduced. Additionally, predicted maximum torque could be used to identify optimum screw torque, as a percentage of the maximum, based on applied compression and residual pullout strength.


      Longitudinal cross-sections were taken from juvenile bovine tibial diaphyses, a validated surrogate of human bone, and 3.5 mm cortical non-locking screws were inserted. Fifty-four samples were used to define the association between stripping torque and cortical thickness. The relationship derived enabled prediction of insertion torques representing 40 to 100% of the theoretical stripping torque (Tstr) for a further 170 samples. Screw-bone compression generated during insertion was measured, followed immediately by axial pullout testing.


      Screw-bone compression increased linearly with applied torque up to 80% of Tstr (R2 = 0.752, p < 0.001), but beyond this, no significant further compression was generated. After screw insertion, with all screw threads engaged, more tightening did not create any significant (R2 = 0.000, p = 0.498) increase in pullout strength.


      Increasing screw tightness beyond 80% of the maximum did not increase screw-bone compression. Variations in torques below Tstr, did not affect pullout forces of inserted screws. Further validation of these findings in human bone and creation of clinical guidelines based on this research approach should improve surgical outcomes and reduce operative costs.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • ASTM
        Standard Specification and Test Methods for Metallic Medical Bone Screws F-543-17.
        American Society for Testing and Materials, Pennsylvania2017
        • Aziz Sr., M.
        • Tsuji M.R.
        • Nicayenzi B.
        • Crookshank M.C.
        • Bougherara H.
        • Schemitsch E.H.
        • Zdero R.
        Biomechanical measurements of stopping and stripping torques during screw insertion in five types of human and artificial humeri.
        Proc. Inst. Mech. Eng. H. 2014; 228: 446-455
        • Battula S.
        • Schoenfeld A.J.
        • Sahai V.
        • Vrabec G.A.
        • Tank J.
        • Njus G.O.
        The effect of pilot hole size on the insertion torque and pullout strength of self-tapping cortical bone screws in osteoporotic bone.
        J. Trauma. 2008; 64: 990-995
        • Bayraktar H.H.
        • Keaveny T.M.
        Mechanisms of uniformity of yield strains for trabecular bone.
        J. Biomech. 2004; 37: 1671-1678
        • Broderick J.M.
        • Bruce-Brand R.
        • Stanley E.
        • Mulhall K.J.
        Osteoporotic hip fractures: the burden of fixation failure.
        Sci. World J. 2013; 2013: 1-7
        • Buhler D.W.
        • Berlemann U.
        • Oxland T.R.
        • Nolte L.-P.
        Moments and forces during pedicle screw insertion-in vitro and in vivo measurements.
        Spine. 1998; 23: 1220-1227
        • Cleek T.M.
        • Reynolds K.J.
        • Hearn T.C.
        Effect of screw torque level on cortical bone pullout strength.
        J. Orthop. Trauma. 2007; 21: 117-123
        • Collinge C.
        • Hartigan B.
        • Lautenschlager E.P.
        Effects of surgical errors on small fragment screw fixation.
        J. Orthop. Trauma. 2006; 20: 410-413
        • Cordey J.
        • Rahn B.A.
        • Perren S.M.
        Human torque control in the use of bone screws.
        in: Uhthoff H.K. Stahl E. Current Concepts of Internal Fixation of Fractures. Springer-Verlag, Switzerland1980: 235-243
        • Cowin S.
        Bone mechanics.
        in: Press C. Bone Mechanics. CRC Press, New York1989: 97-158
        • Edwards T.R.
        • Tevelen G.
        • English H.
        • Crawford R.
        Stripping torque as a predictor of successful internal fracture fixation.
        ANZ J. Surg. 2005; 75: 1096-1099
        • Egol K.A.
        • Kubiak E.N.
        • Fulkerson E.
        • Kummer F.J.
        • Koval K.J.
        Biomechanics of locked plates and screws.
        J. Orthop. Trauma. 2004; 18
        • Evans F.G.
        Mechanical properties and histology of cortical bone from younger and older men.
        Anat. Rec. 1976; 185: 1-11
        • Feroz Dinah A.
        • Mears S.C.
        • Knight T.A.
        • Soin S.P.
        • Campbell J.T.
        • Belkoff S.M.
        Inadvertent screw stripping during ankle fracture fixation in elderly bone.
        Geriatric Orthopaedic Surgery & Rehabilitation. 2011; 2: 86-89
        • Fletcher J.W.A.
        • Williams S.
        • Whitehouse M.R.
        • Gill H.S.
        • Preatoni E.
        Juvenile Bovine Bone Is an Appropriate Surrogate for Normal and Reduced Density Human Bone in Biomechanical Testing.
        2018 (Data file and code book)
        • Fletcher J.W.A.
        • Williams S.
        • Whitehouse M.R.
        • Gill H.S.
        • Preatoni E.
        Juvenile bovine bone is an appropriate surrogate for normal and reduced density human bone in biomechanical testing: a validation study.
        Sci. Rep. 2018; 810181
        • Fletcher J.
        • Ehrhardt B.
        • MacLeod A.
        • Whitehouse M.
        • Gill H.
        • Preatoni E.
        Dataset for "Non-locking screw insertion: no benefit seen if tightness exceeds 80% of the maximum torque".
        University of Bath Research Data Archive. 2019;
        • Fletcher J.W.A.
        • Wenzel L.
        • Neumann V.
        • Richards G.
        • Gueorguiev B.
        • Gill H.S.
        • Preatoni E.
        • Whitehouse M.R.
        Surgical performance when inserting non-locking screws – a systematic review.
        EFORT Open Reviews. 2019; ([Epub ahead of print])
        • Gotzen L.
        Untersuchungen zur Neutralisations-Plattenosteosynthese und Richtlinien fuer ihre praktische Durchführung.
        1976 (Hannover)
        • Gustafson P.A.
        • Geeslin A.G.
        • Prior D.M.
        • Chess J.L.
        Effect of real-time feedback on screw placement into synthetic cancellous bone.
        J. Orthop. Trauma. 2016; 30: e279-e284
        • Hobatho M.-C.
        • Rho J.Y.
        • Ashman R.B.
        Atlas of mechanical properties of human cortical and cancellous bone.
        J. Biomech. 1992; 25: 669
        • Inceoglu S.
        • McLain R.F.
        • Cayli S.
        • Kilincer C.
        • Ferrara L.
        Stress relaxation of bone significantly affects the pull-out behavior of pedicle screws.
        J. Orthop. Res. 2004; 22: 1243-1247
        • Kenwright J.
        • Goodship A.
        • Kelly D.
        • Newman J.
        • Harris J.
        • Richardson J.
        • Evans M.
        • Spriggins A.
        • Burrough S.
        • Rowley D.
        Effect of controlled axial micromovement on healing of tibial fractures.
        Lancet. 1986; 328: 1185-1187
        • Lawson K.J.
        • Brems J.
        Effect of insertion torque on bone screw pullout strength.
        Orthopedics. 2001; 24: 451-454
        • MacLeod A.R.
        • Simpson A.H.R.
        • Pankaj P.
        Reasons why dynamic compression plates are inferior to locking plates in osteoporotic bone: a finite element explanation.
        Comput. Methods Biomech. Biomed. Engin. 2015; 18: 1818-1825
        • Messmer P.
        • Perren S.M.
        • Suhm N.
        in: Ruedi T. Buckley R. Moran C. AO Principles of Fracture Management. AO Publishing, Switzerland2007: 213-225
        • Parekh J.
        • Shepherd D.E.
        • Hukins D.W.
        • Hingley C.
        • Maffulli N.
        In vitro investigation of friction at the interface between bone and a surgical instrument.
        Proc. Inst. Mech. Eng. H J. Eng. Med. 2013; 227: 712-718
        • Perren S.
        • Frigg R.
        • Hehli M.
        • Tepic S.
        Lag screw.
        in: TP R. WM M. AO Principles of Fracture Management, Stuttgart. 2000: 157-167
      1. R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria2013
        • Ricci W.M.
        • Tornetta P.
        • Petteys T.
        • Gerlach D.
        • Cartner J.
        • Walker Z.
        • Russell T.A.
        A comparison of screw insertion torque and pullout strength.
        J. Orthop. Trauma. 2010; 24: 374-378
        • Stoesz M.J.
        • Gustafson P.A.
        • Patel B.V.
        • Jastifer J.R.
        • Chess J.L.
        Surgeon perception of cancellous screw fixation.
        J. Orthop. Trauma. 2014; 28: e1-e7
      2. Swartz, D., Wittenberg, R., Shea, M., White, A., Hayes, W., 1991. Physical and mechanical properties of calf lumbosacral trabecular bone. J. Biomech. 24, pp. 1059–1061, 1063–1068.

        • Troughton M.J.
        Handbook of Plastics Joining: A Practical Guide.
        Plastics Design Library, Norwich (NY)2008: 180
        • Tsai W.-C.
        • Chen P.-Q.
        • Lu T.-W.
        • Wu S.-S.
        • Shih K.-S.
        • Lin S.-C.
        Comparison and prediction of pullout strength of conical and cylindrical pedicle screws within synthetic bone.
        BMC Musculoskelet. Disord. 2009; 10: 44
        • Tsuji M.
        • Crookshank M.
        • Olsen M.
        • Schemitsch E.H.
        • Zdero R.
        The biomechanical effect of artificial and human bone density on stopping and stripping torque during screw insertion.
        J. Mech. Behav. Biomed. Mater. 2013; 22: 146-156
        • Wall S.J.
        • Soin S.P.
        • Knight T.A.
        • Mears S.C.
        • Belkoff S.M.
        Mechanical evaluation of a 4-mm cancellous “rescue” screw in osteoporotic cortical bone: a cadaveric study.
        J. Orthop. Trauma. 2010; 24: 379-382
        • Wallace A.
        • Draper E.
        • Strachan R.
        • McCarthy I.
        • Hughes S.
        The vascular response to fracture micromovement.
        Clin. Orthop. Relat. Res. 1994; 301: 281-290
        • Zdero R.
        • MacAvelia T.
        • Janabi-Sharifi F.
        Chapter 6 - force and torque measurements of surgical drilling into whole bone.
        in: Zdero R. Experimental Methods in Orthopaedic Biomechanics. Academic Press, 2017: 85-100
        • Zdero R.
        • Tsuji M.R.S.
        • Crookshank M.C.
        Chapter 7 - insertion torque testing of cortical and cancellous screws in whole bone.
        in: Zdero R. Experimental Methods in Orthopaedic Biomechanics. Academic Press, 2017: 101-116