Advertisement

Longitudinal changes in location-specific cartilage thickness and T2 relaxation-times after posterior cruciate ligament reconstruction for isolated and multiligament injury

      Highlights

      • First longitudinal study of cartilage thickness/composition following PCL injury
      • PCL injured knees rapidly lose medial tibiofemoral and patellofemoral cartilage.
      • Cartilage loss was not associated with thigh muscle size or body mass index.
      • PCL injury is an attractive model for evaluating disease modifying interventions.

      Abstract

      Background

      Knee cartilage undergoes pathological changes after anterior cruciate ligament rupture. However, little is known about the development and progression of structural pathology after posterior cruciate ligament (PCL) injury. This study aimed to determine the location-specific longitudinal changes in knee cartilage morphology (thickness) and composition (T2 relaxation-times) after PCL rupture and reconstruction (PCLR) and compare these to uninjured controls.

      Methods

      Fifteen adults (mean age 39 years (standard deviation 10), 12 men) with PCLR for isolated and multiligment injury had MRIs acquired at a minimum 5 years post-PCLR and 1 year later. Location-specific changes in knee cartilage thickness and T2 relaxation-times were determined quantitatively after segmentation, and compared with annualised cartilage changes in 13 active controls (mean age 45 years (standard deviation 4), 6 men).

      Findings

      Following PCLR, the annual loss of cartilage thickness was greatest in the medial femoral condyle (mean −4.0%, 95% confidence interval [95% CI] −6.7, −1.4), medial tibia (mean −3.7%, 95% CI −6.1, −1.3), and patella (mean −3.2%, 95% CI −4.7, −1.6). In the medial femoral condyle and trochlea, the PCLR group lost significantly more cartilage thickness than uninjured controls (mean difference −3.7%, 95% CI −0.9, −6.5; and −1.8%, 95% CI −0.1, −3.6, respectively). Deep and superficial zone T2 relaxation-times were relatively constant over time, without longitudinal differences between PCLR and control knees.

      Interpretation

      PCL reconstructed knees displayed substantially greater rates of cartilage loss in the medial tibiofemoral and patellofemoral compartments compared to uninjured controls, highlighting that the process of degeneration remains active many years after injury.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Boynton M.D.
        • Tietjens B.R.
        Long-term followup of the untreated isolated posterior cruciate ligament-deficient knee.
        Am. J. Sports Med. 1996; 24: 306-310
        • Chandrasekaran S.
        • Ma D.
        • Scarvell J.M.
        • et al.
        A review of anatomical, biomechanical and kinematic findings of posterior cruciate ligament injury with respect to non-operative management.
        Knee. 2012; 19: 738-745
        • Clancy W.G.
        • Shelbourne K.D.
        • Zoellner G.B.
        • et al.
        Treatment of knee joint instability secondary to rupture of the posterior cruciate ligament.
        J. Bone Joint Surg. 1983; 65A: 310-322
        • Culvenor A.G.
        • Collins N.J.
        • Guermazi A.
        • et al.
        Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation.
        Arthritis Rheum. 2015; 67: 946-955
        • Culvenor A.G.
        • Boeth H.
        • Diederichs G.
        • et al.
        Longitudinal bone, muscle and adipose tissue changes in physically active subjects - sex differences during adolescence and maturity.
        J. Musculoskelet. Neuronal Interact. 2016; 16: 237-246
        • Culvenor A.G.
        • Wirth W.
        • Maschek S.
        • et al.
        Longitudinal change in patellofemoral cartilage thickness, cartilage T2 relaxation times, and subchondral bone plate area in adolescent vs mature athletes.
        Euro J Radiol. 2017; 92: 24-29
        • Culvenor A.G.
        • Oiestad B.E.
        • Hart H.F.
        • Stefanik J.J.
        • Guermazi A.
        • Crossley KM.
        Prevalence of knee osteoarthritis features on magnetic resonance imaging in asymptomatic uninjured adults: a systematic review and meta-analysis.
        Br J Sports Med. 2019; 53 (Epub ahead of print): 1268-1278https://doi.org/10.1136/bjsports-2018-099257
        • Dardzinski B.J.
        • Schneider E.
        Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin-spin (T2) relaxation time measurements.
        Osteoarthr. Cartil. 2013; 21: 710-720
        • Eckstein F.
        • Ateshian G.A.
        • Burgkart R.
        • et al.
        Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis.
        Osteoarthr. Cartil. 2006; 14: 974-983
        • Eckstein F.
        • Hudelmaier M.
        • Wirth W.
        • et al.
        Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the osteoarthritis initiative.
        Ann. Rheum. Dis. 2006; 65: 433-441
        • Eckstein F.
        • Maschek S.
        • Wirth W.
        • et al.
        One year change of knee cartilage morphology in the first release of participants from the osteoarthritis initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status.
        Ann. Rheum. Dis. 2009; 68: 674-679
        • Eckstein F.
        • Nevitt M.
        • Gimona A.
        • et al.
        Rates of change and sensitivity to change in cartilage morphology in healthy knees and in knees with mild, moderate, and end-stage radiographic osteoarthritis: results from 831 participants from the osteoarthritis initiative.
        Arthritis Care Res. 2011; 63: 311-319
        • Eckstein F.
        • Boeth H.
        • Diederichs G.
        • et al.
        Longitudinal change in femorotibial cartilage thickness and subchondral bone plate area in male and female adolscent vs. mature athletes.
        Ann. Anat. 2014; 196: 150-157
        • Eckstein F.
        • Wirth W.
        • Lohmander L.S.
        • et al.
        Five-year followup of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament.
        Arthritis Rheum. 2015; 67: 152-161
        • Frobell R.
        Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption.
        J. Bone Joint Surg. 2011; 93A: 1096-1103
        • Frobell R.B.
        • Le Graverand M.P.
        • Buck R.
        • et al.
        The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year.
        Osteoarthr. Cartil. 2009; 17: 161-167
        • Geissler W.B.
        • Whipple T.L.
        Intraarticular abnormalities in associations with posterior cruciate ligament injuries.
        Am. J. Sports Med. 1993; 21: 846-849
        • Gill T.J.
        • DeFrate L.E.
        • Wang C.
        • et al.
        The biomechanical effect of posterior cruciate ligament reconstruction on knee joint function.
        Am. J. Sports Med. 2003; 31: 530-536
        • Gwinner C.
        • Weiler A.
        • Denecke T.
        • et al.
        Degenerative changes after posterior cruciate ligament reconstruction are irrespective of posterior knee stability: MRI-based long-term results.
        Arch. Orthop. Trauma Surg. 2018; 138: 377-385
        • Hunter D.J.
        • Niu J.
        • Zhang Y.
        • et al.
        Change in cartilage morphometry: a sample of the progression cohort of the osteoarthritis initiative.
        Ann. Rheum. Dis. 2009; 68: 349-356
        • Janousek A.T.
        • Jones D.C.
        • Clatworthy M.
        • et al.
        Posterior cruciate ligament injuries of the knee joint.
        Sports Med. 1999; 28: 429-441
        • Jungmann P.M.
        • Kraus M.S.
        • Nardo L.
        • et al.
        T(2) relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee knee occur: longitudinal data from the osteoarthritis initiative.
        J Magn Reson Imag. 2013; 38: 1415-1424
        • Jungmann P.M.
        • Baum T.
        • Nevitt M.C.
        • et al.
        Degeneration in ACL injured knees with and without reconstruction in relation to muscle size and fat content-data from the osteoarthritis initiative.
        PLoS One. 2016; 11e0166865
        • Kim Y.M.
        • Lee C.A.
        • Matava M.J.
        Clinical results of arthroscopic single-bundle transtibial posterior cruciate ligament reconstruction: a systematic review.
        Am. J. Sports Med. 2011; 39: 425-434
        • Lammentausta E.
        • Kiviranta P.
        • Nissi M.J.
        • et al.
        T2 relaxation time and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of human patellar cartilage at 1.5 T and 9.4 T: relationships with tissue mechanical properties.
        J. Orthop. Res. 2006; 24: 366-374
        • Lenschow S.
        • Zantop T.
        • Weimann A.
        • et al.
        Joint kinematics and in situ forces after single bundle PCL reconstruction: a graft placed at the centre of the femoral attachment does not restore normal posterior laxity.
        Arch Orthop Traum Surg. 2006; 126: 253-259
        • Li X.
        • Kuo D.
        • Theologis A.
        • et al.
        Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1 and T2 - initial experience with 1-year follow-up.
        Radiology. 2011; 258: 505-514
        • Logan M.
        • Williams A.
        • Lavelle J.
        • et al.
        The effect of posterior cruciate ligament deficiency on knee kinematics.
        Am. J. Sports Med. 2004; 32: 1-8
        • Mariani P.P.
        • Adriani E.
        • Santori N.
        • et al.
        Arthroscopic posterior cruciate ligament reconstruction with bone-tendon-bone patellar graft.
        Knee Surg. Sports Traumatol. Arthrosc. 1997; 5: 239-244
        • Mosher T.J.
        • Dardzinski B.J.
        Cartilage MRI T2 relaxation time mapping: overview and applications.
        Semin. Musculoskelet. Radiol. 2004; 8: 355-368
        • Noyes F.R.
        • Barber-Westin S.D.
        Surgical restoration to treat chronic deficiency of the posterolateral complex and cruciate ligaments of the knee joint.
        Am. J. Sports Med. 1994; 24: 415-426
        • Parolie J.M.
        • Bergfield J.A.
        Long-term results of nonoperative treatment of isolated posterior cruciate ligament injuries in the athlete.
        Am. J. Sports Med. 1986; 14: 35-38
        • Pollard T.C.B.
        • Gwilym S.E.
        • Carr A.J.
        The assessment of early osteoarthritis.
        J. Bone Joint Surg. 2008; 90B: 411-421
        • Skyhar M.J.
        • Warren R.F.
        • Ortiz G.J.
        • et al.
        The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee.
        J. Bone Joint Surg. 1993; 75A: 694-699
        • Strobel M.J.
        • Weiler A.
        • Schulz M.S.
        • et al.
        Arthroscopic evaluation of articular cartilage lesions in posterior cruciate ligament-deficient knees.
        Arthroscopy. 2003; 19: 262-268
        • Su F.
        • Hilton J.F.
        • Nardo L.
        • et al.
        Cartilage morphology and T1 and T2 quantification in ACL-reconstructed knees: a 2-year follow-up.
        Osteoarthr. Cartil. 2013; 21: 1058-1067
        • van de Velde S.
        • Gill T.J.
        • Li G.
        Dual fluoroscopic analysis of the posterior cruciate ligament-deficient patellofemoral joint during lunge.
        Med. Sci. Sports Exerc. 2009; 41: 1198-1205
        • van Meer B.L.
        • Meuffels D.E.
        • van Eijsden W.A.
        • et al.
        Which determinants predict tibiofemoral and patellofemoral osteoarthritis after anterior cruciate ligament injury? A systematic review.
        Br. J. Sports Med. 2015; 49: 975-983
        • Von Eisenhart-Rothe R.
        • Lenze U.
        • Hinterwinner S.
        • et al.
        Tibiofemoral and patellofemoral joint 3D-kinematics in patients with posterior cruciate ligament deficiency compared to healthy volunteers.
        BMC Musculoskelet. Disord. 2012; 13: 231
        • Wirth W.
        • Eckstein F.
        • Boeth H.
        • et al.
        Longitudinal analysis of MR-spin-spin relaxation times (T2) in medial femorotibial cartilage of adolescent vs mature athletes: dependence of deep and superficial zone properties on sex and age.
        Osteoarthr. Cartil. 2014; 22: 1554-1558
        • Wirth W.
        • Maschek S.
        • Roemer F.W.
        • et al.
        Layer-specific femorotibial cartilage T2 relaxation time in knees with and without early knee osteoarthritis: data from the Osteoarthritis Initiative (OAI).
        Sci. Rep. 2016; 634202