Advertisement

The effect of cup medialization and lateralization on hip range of motion in total hip arthroplasty

      Highlights

      • The horizontal cup position substantially affects the range of motion after total hip arthroplasty.
      • The stem offset also substantially affects the range of motion in total hip arthroplasty
      • The advantage of cup medialization depends on the individual anatomy.

      Abstract

      Background

      There is little description of the effect of cup position on the hip range of motion in total hip arthroplasty. The purpose is to evaluate the effect of cup medialization/lateralization with a compensatory increase/decrease in femoral offset on the hip range of motion, and whether the bone morphology of the anterior inferior iliac spine affects hip range of motion in total hip arthroplasty.

      Methods

      Using the CT data of 100 patients (male; 30, female; 70), 3D-dynamic motion analysis was performed in four scenarios with cup medialization/lateralization with the same/decreased global offset. We calculated the range of motion before component impingement and bony impingement in flexion, internal rotation and external rotation using the software. Furthermore, we measured bony morphological features of anterior inferior iliac spine, and we analyzed the correlations among them.

      Findings

      We found that the cup medialization with the same stem offset had negative effects on hip range of motion in flexion and internal rotation due to bony impingement, whereas cup medialization caused external rotation to significantly decrease with the same global offset. On the other hand, cup lateralization with the same global offset had negative effects on flexion and internal rotation, whereas external rotation increased. Furthermore, there were negative correlations among flexion and laterally large and steep anterior inferior iliac spine.

      Interpretation

      Our results demonstrated that the advantage of cup medialization can depend on the individual anatomy such as bony morphology of anterior inferior iliac spine in flexion.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbas A.A.
        • Kim Y.J.
        • Song E.K.
        • et al.
        Oversized acetabular socket causing groin pain after total hip arthroplasty.
        J. Arthroplast. 2009; 241144.e8
        • Abolghasemian M.
        • Samiezadeh S.
        • Jafari D.
        • et al.
        Displacement of the hip center of rotation after arthroplasty of Crowe III and IV dysplasia: a radiological and biomechanical study.
        J. Arthroplast. 2013; 28: 1031-1035
        • Archbold H.A.
        • Mockford B.
        • Molloy D.
        • McConway J.
        • Ogonda L.
        • Beverland D.
        The transverse acetabular ligament: an aid to orientation of the acetabular component during primary total hip replacement: a preliminary study of 1000 cases investigating postoperative stability.
        J. Bone Joint Surg. (Br.). 2006; 88: 883-886
        • Asayama I.
        • Naito M.
        • Fujisawa M.
        • et al.
        Relationship between radiographic measurements of reconstructed hip joint position and the Trendelenburg sign.
        J. Arthroplast. 2002; 17: 747-751
        • Baghdadi Y.M.
        • Larson A.N.
        • Sierra R.J.
        Restoration of the hip center during THA performed for protrusio acetabuli is associated with better implant survival.
        Clin. Orthop. Relat. Res. 2013; 471: 3251
        • Barsoum W.K.
        • Patterson R.W.
        • Higuera C.
        • Klika A.K.
        • Krebs V.E.
        • Molloy R.
        A computer model of the position of the combined component in the prevention of impingement in total hip replacement.
        J. Bone Joint Surg. (Br.). 2007; 89: 839-845
        • Bonnin M.P.
        • Archbold P.H.
        • Basiglini L.
        • Selmi T.A.
        • Beverland D.E.
        Should the acetabular cup be medialised in total hip arthroplasty.
        Hip Int. 2011; 21: 428-435
        • Bozic K.J.
        • Lau E.C.
        • Ong K.L.
        • Vail T.P.
        • Rubash H.E.
        • Berry D.J.
        Comparative effectiveness of metal-on-metal and metal-on-polyethylene bearings in Medicare total hip.
        J. Arthroplast. 2012 Sep; 27: 37-40
        • Callaghan J.J.
        • Salvati E.A.
        • Pellicci P.M.
        • et al.
        Results of revision for mechanical failure after cemented total hip replacement, 1979 to 1982. A two to five-year follow-up.
        J. Bone Joint Surg. Am. 1985; 67: 1074-1085
        • Charnley J.
        Low Friction Arthroplasty.
        1974
        • Crowe J.F.
        • Mani V.J.
        • Ranawat C.S.
        Total hip replacement in congenital disolation and dysplasia of the hip.
        J. Bone Joint Surg. Am. 1979; 61: 15-23
        • Hemmerich A.
        • Brown H.
        • Smith S.
        • Marthandam S.S.
        • Wyss U.P.
        Hip, knee, and ankle kinematics of high range of motion activities of daily living.
        J. Orthop. Res. 2006; 24: 770-781
        • Hjorth M.H.
        • Stilling M.
        • Lorenzen N.D.
        • Jakobsen S.S.
        • Soballe K.
        • Mechlenburg I.
        Block-step asymmetry 5 years after large-head metal-on-metal total hip arthroplasty is related to lower muscle mass and leg power on the implant side.
        Clin. Biomech. 2014 Jun; 29: 684-690
        • Jolles B.M.
        • Zangger P.
        • Leyvraz P.F.
        Factors predisposing to dislocation after primary total hip arthroplasty. A multivariate analysis.
        J. Arthroplast. 2002; 17: 282-288
        • Kelley S.S.
        • Lachiewicz P.F.
        • Hickman J.M.
        • Paterno S.M.
        Relationship of femoral head and acetabular size to the prevalence of dislocation.
        Clin. Orthop. 1998; 355: 163-170
        • Lachiewicz P.F.
        • Soileau E.S.
        Low early and late dislocation rates with 36- and 40-mm heads in patients at high risk for dislocation.
        Clin. Orthop. Relat. Res. 2013 Feb; 471: 439-443
        • Lachiewicz P.F.
        • Soileau E.S.
        Low early and late dislocation rates with 36- and 40-mm heads in patients at high risk for dislocation.
        Clin. Orthop. Relat. Res. 2013 Fe; 471: 439-443
        • Lewinnek G.E.
        Dislocations after total hip-replacement arthroplasties.
        J. Bone Joint Surg. Am. 1978; 60: 217
        • McGrory B.J.
        • Morrey B.F.
        • Cahalan T.D.
        • An K.N.
        • Cabanela M.E.
        Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty.
        J. Bone Joint Surg. (Br.). 1995; 77: 865-869
        • Miki H.
        • Sugano N.
        • Yonenobu K.
        • Tsuda K.
        • Hattori M.
        • Suzuki N.
        Detecting cause of dislocation after total hip arthroplasty by patient-specific four-dimensional motion analysis.
        Clin. Biomech. 2013 Feb; 28: 182-186
        • Miyoshi H.
        • Mikami H.
        • Oba K.
        • Amari R.
        Anteversion of the acetabular component aligned with the transverse acetabular ligament in total hip arthroplasty.
        J. Arthroplast. 2012 Jun; 27: 916-922
        • Nadzadi M.E.
        • Pedersen D.R.
        • Yack H.J.
        • Callaghan J.J.
        • Brown T.D.
        Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation.
        J. Biomech. 2003; 36: 77-91
        • Nadzadi M.E.
        • Pedersen D.R.
        • Yack H.J.
        • Callaghan J.J.
        • Brown T.D.
        Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation.
        J. Biomech. 2003; 36: 577-591
        • Sariali E.
        • Klouche S.
        • Mamoudy P.
        Investigation into three dimensional hip anatomy in anterior dislocation after THA. Influence of the position of the hip rotation centre.
        Clin. Biomech. 2012 Jul; 27: 562-567
        • Scheerlinck T.
        Primary hip arthroplasty templating on standard radiographs. A stepwise approach.
        Acta Orthop. Belg. 2010; 76: 432-442
        • Scheerlinck T.
        Cup positioning in total hip arthroplasty.
        Acta Orthop. Belg. 2014; 80: 336-347
        • Schmalzried T.P.
        • Shepherd E.F.
        • Dorey F.J.
        • et al.
        The John Charnley Award. Wear is a function of use, not time.
        Clin. Orthop. Relat. Res. 2000; 36
        • Shoji T.
        • Yasunaga Y.
        • Yamasaki T.
        • Mori R.
        • Hamanishi M.
        • Ochi M.
        Bony impingement depends on the bone morphology of the hip after total hip arthroplasty.
        Int. Orthop. 2013; 37: 1897-1903
        • Shoji T.
        • Yasunaga Y.
        • Yamasaki T.
        • Mori R.
        • Hamanishi M.
        • Ochi M.
        Low femoral antetorsion and total hip arthroplasty: a risk factor.
        Int. Orthop. 2015; 39: 7-12
        • Shoji T.
        • Yasunaga Y.
        • Yamasaki T.
        • Izumi S.
        • Adachi N.
        • Ochi M.
        Anterior inferior iliac spine bone morphology in hip dysplasia and its effect on hip range of motion in total hip arthroplasty.
        J. Arthroplast. 2016 Sep; 31: 2058-2063
        • Shoji T.
        • Yamasaki T.
        • Izumi S.
        • Hachisuka S.
        • Ochi M.
        The influence of stem offset and neck shaft angles on the range of motion in total hip arthroplasty.
        Int. Orthop. 2016; 40: 245-253
        • Sugano N.
        • Tsuda K.
        • Miki H.
        • Takao M.
        • Suzuki N.
        • Nakamura N.
        Dynamic measurements of hip movement in deep bending activities after total hip arthroplasty using a 4-dimentional motion analysis system.
        J. Arthroplast. 2012; 27: 1562-1568
        • Tannast M.
        • Kubiak-Langer M.
        • Langlotz F.
        • Puls M.
        • Murphy S.B.
        • Siebenrock K.A.
        Noninvasive three-dimensional assessment of femoroacetabular impingement.
        J. Orthop. Res. 2007; 25: 122-131
        • Widmer K.H.
        • Majewski M.
        The impact of the CCD-angle on range of motion and cup positioning in total hip arthroplasty.
        Clin. Biomech. 2005 Aug; 20: 723-728
        • Widmer K.H.
        • Zurfluh B.
        Compliant positioning of total hip components for optimal range of motion.
        J. Orthop. Res. 2004; 22: 815-821
        • Wroblewski B.M.
        • Siney P.D.
        • Fleming P.A.
        Wear of the cup in the Charnley LFA in the young patient.
        J. Bone Joint Surg. (Br.). 2004; 86: 498
        • Wu G.
        • et al.
        ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine.
        J. Biomech. 2002; 35: 543-548
        • Yoshimine F.
        The safe-zones for combined cup and neck anteversions that fulfill the essential range of motion and their optimum combination in total hip replacements.
        J. Biomech. 2006; 39: 1315-1323