How does a novel knitted titanium nucleus prosthesis change the kinematics of a cervical spine segment? A biomechanical cadaveric study

      Highlights

      • A new nucleus prosthesis made of knitted titanium filaments was tested in human cervical spine specimens (C4-7)
      • The RoM (C4-7) were evaluated before and after implantation as well as after cyclic loading of the specimens
      • The RoM didn’t show significant differences after implantation and cyclic loading compared to the native state
      • No implant migration could be observed during the testing

      Abstract

      Background

      Total disc replacement is a possible treatment alternative for patients with degenerative disc disease, especially in the cervical spine. The aim is to restore the physiological flexibility and biomechanical behavior. A new approach based on these requirements is the novel nucleus prosthesis made of knitted titanium wires.

      Methods

      The biomechanical functionalities of eight human cervical (C4-C7) spine segments were investigated. The range of motion was quantified using an ultra-sound based motion analysis system. Moreover, X-rays in full flexion and extension of the segment were taken to define the center of rotation before and after implantation of the nucleus prosthesis as well as during and after complex cyclic loading.

      Findings

      The mean range of motion of the index segment (C5/6) in flexion/extension showed a significant reduction of range of motion from 9.7° (SD 4.33) to 6.0° (SD 3.97) after implantation (P = 0.037). Lateral bending and axial rotation were not significantly reduced after implanting and during cyclic loading in our testing. During cyclic loading the mean range of motion for flexion/extension increased to 7.2° (SD 3.67). The center of rotation remained physiological in the ap-plane and moved cranially in the cc-plane (−27% to −5% in cc height) during the testing.

      Interpretation

      The biomechanical behavior of the nucleus implant might lower the risk for adjacent joint disorders and restore native function of the index segment. Further in vivo research is needed for other factors, like long-term effects and patient's satisfaction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anderson P.A.
        • Rouleau J.P.
        Intervertebral disc arthroplasty.
        Spine. 2004; 29: 2779-2786
        • Anderson P.A.
        • Nassr A.
        • Currier B.L.
        • Sebastian A.S.
        • Arnold P.M.
        • Fehlings M.G.
        • Mroz T.E.
        • Riew K.D.
        Evaluation of adverse events in Total disc replacement: a meta-analysis of FDA summary of safety and effectiveness data.
        Glob. Spine J. 2017; 7: 76S-83S
        • Anderst W.J.
        • Lee J.Y.
        • Donaldson 3rd, W.F.
        • Kang J.D.
        Six-degrees-of-freedom cervical spine range of motion during dynamic flexion-extension after single-level anterior arthrodesis: comparison with asymptomatic control subjects.
        J. Bone Joint Surg. 2013; 95: 497-506
        • Anderst W.J.
        • Donaldson 3rd, W.F.
        • Lee J.Y.
        • Kang J.D.
        Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading.
        J. Biomech. 2015; 48: 1286-1293
        • Bartels R.H.
        • Donk R.D.
        • Pavlov P.
        • van Limbeek J.
        Comparison of biomechanical properties of cervical artificial disc prosthesis: a review.
        Clin. Neurol. Neurosurg. 2008; 110: 963-967
        • Bertagnoli R.
        • Yue J.J.
        • Fenk-Mayer A.
        • Eerulkar J.
        • Emerson J.W.
        Treatment of symptomatic adjacent-segment degeneration after lumbar fusion with total disc arthroplasty by using the prodisc prosthesis: a prospective study with 2-year minimum follow up.
        J. Neurosurg. Spine. 2006; 4: 91-97
        • Chung J.Y.
        • Kim S.K.
        • Jung S.T.
        • Lee K.B.
        Clinical adjacent-segment pathology after anterior cervical discectomy and fusion: results after a minimum of 10-year follow-up.
        Spine J. 2014; 14: 2290-2298
        • Dejaegher J.
        • Walraevens J.
        • van Loon J.
        • Van Calenbergh F.
        • Demaerel P.
        • Goffin J.
        10-Year follow-up after implantation of the Bryan cervical disc prosthesis.
        Eur. Spine J. 2017; 26: 1191-1198
        • DiAngelo D.J.
        • Foley K.T.
        • Morrow B.R.
        • Schwab J.S.
        • Song J.
        • German J.W.
        • Blair E.
        In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant.
        Neurosurg. Focus. 2004; 17: E7
        • Disch A.C.
        • Schaser K.D.
        • Melcher I.
        • Luzzati A.
        • Feraboli F.
        • Schmoelz W.
        En bloc spondylectomy reconstructions in a biomechanical in-vitro study.
        Eur. Spine J. 2008; 17: 715-725
        • Dmitriev A.E.
        • Cunningham B.W.
        • Hu N.
        • Sell G.
        • Vigna F.
        • McAfee P.C.
        Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model.
        Spine. 2005; 30: 1165-1172
        • Hartmann S.
        • Thome C.
        • Keiler A.
        • Fritsch H.
        • Hegewald A.A.
        • Schmolz W.
        Biomechanical testing of circumferential instrumentation after cervical multilevel corpectomy.
        Eur. Spine J. 2015; 24: 2788-2798
        • Hartmann S.
        • Thome C.
        • Tschugg A.
        • Paesold J.
        • Kavakebi P.
        • Schmolz W.
        Cement-augmented screws in a cervical two-level corpectomy with anterior titanium mesh cage reconstruction: a biomechanical study.
        Eur. Spine J. 2017; 26: 1047-1057
        • Kettler A.
        • Kaps H.P.
        • Haegele B.
        • Wilke H.J.
        Biomechanical behavior of a new nucleus prosthesis made of knitted titanium filaments.
        SAS J. 2007; 1: 125-130
        • Koller H.
        • Schmoelz W.
        • Zenner J.
        • Auffarth A.
        • Resch H.
        • Hitzl W.
        • Malekzadeh D.
        • Ernstbrunner L.
        • Blocher M.
        • Mayer M.
        Construct stability of an instrumented 2-level cervical corpectomy model following fatigue testing: biomechanical comparison of circumferential antero-posterior instrumentation versus a novel anterior-only transpedicular screw-plate fixation technique.
        Eur. Spine J. 2015; 24: 2848-2856
        • Li Y.
        • Yang C.
        • Zhao H.
        • Qu S.
        • Li X.
        • Li Y.
        New developments of Ti-based alloys for biomedical applications.
        Materials. 2014; 7: 1709-1800
        • Lou J.
        • Li H.
        • Rong X.
        • Wu W.
        • Liu H.
        Location change of center of rotation after single-level cervical total disc replacement with ProDisc-C.
        Acta Orthop. Traumatol. Turc. 2016; 50: 339-345
        • McAnany S.J.
        • Merrill R.K.
        • Overley S.C.
        • Kim J.S.
        • Brochin R.L.
        • Qureshi S.A.
        Investigating the 7-year cost-effectiveness of single-level cervical disc replacement compared to anterior cervical discectomy and fusion.
        Glob. Spine J. 2018; 8: 32-39
        • McHanwell S.B.E.
        • Chirculescu A.R.M.
        • Drukker J.
        • van Mameren H.
        • Mazzotti G.
        • Pais D.
        • Paulsen F.
        • Plaisant O.
        • Caillaud M.M.
        • Laforet E.
        • Riedere B.M.
        • Sanudo J.R.
        • Bueno-Lopez J.L.
        • Donate-Oliver F.
        • Sprumont P.
        • Teofilovski-Parapid G.
        • Moxham B.J.
        The legal and ethical framework governing body donation in Europe - a review of current practice and recommendations for good practice.
        Eur. J. Anat. 2008; 12: 1-24
        • Patwardhan A.G.
        • Havey R.M.
        • Ghanayem A.J.
        • Diener H.
        • Meade K.P.
        • Dunlap B.
        • Hodges S.D.
        Load-carrying capacity of the human cervical spine in compression is increased under a follower load.
        Spine. 2000; 25: 1548-1554
        • Phillips F.M.
        • Geisler F.H.
        • Gilder K.M.
        • Reah C.
        • Howell K.M.
        • McAfee P.C.
        Long-term outcomes of the US FDA IDE prospective, randomized controlled clinical trial comparing PCM cervical disc arthroplasty with anterior cervical discectomy and fusion.
        Spine. 2015; 40: 674-683
        • Radcliff K.
        • Davis R.J.
        • Hisey M.S.
        • Nunley P.D.
        • Hoffman G.A.
        • Jackson R.J.
        • Bae H.W.
        • Albert T.
        • Coric D.
        Long-term evaluation of cervical disc arthroplasty with the Mobi-C(c) cervical disc: a randomized, prospective, multicenter clinical trial with seven-year follow-up.
        Int. J. Spine Surg. 2017; 11: 31
        • Ryu W.H.
        • Kowalczyk I.
        • Duggal N.
        Long-term kinematic analysis of cervical spine after single-level implantation of Bryan cervical disc prosthesis.
        Spine J. 2013; 13: 628-634
        • Schmoelz W.
        • Onder U.
        • Martin A.
        • von Strempel A.
        Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment.
        Eur. Spine J. 2009; 18: 1478-1485
        • Schmoelz W.
        • Sandriesser S.
        • Loebl O.
        • Bauer M.
        • Krappinger D.
        Effect of cage design, supplemental posterior instrumentation and approach on primary stability of a lumbar interbody fusion - a biomechanical in vitro study.
        Clin. Biomech. 2017; 48: 30-34
        • Schulze M.
        • Trautwein F.
        • Vordemvenne T.
        • Raschke M.
        • Heuer F.
        A method to perform spinal motion analysis from functional X-ray images.
        J. Biomech. 2011; 44: 1740-1746
        • Shichang L.
        • Yueming S.
        • Limin L.
        • Lei W.
        • Zhongjie Z.
        • Chunguang Z.
        • Xi Y.
        Clinical and radiologic comparison of dynamic cervical implant arthroplasty and cervical total disc replacement for single-level cervical degenerative disc disease.
        J. Clin. Neurosci. 2016; 27: 102-109
        • Tendulkar G.
        • Grau P.
        • Ziegler P.
        • Buck Sr., A.
        • Buck Jr., A.
        • Badke A.
        • Kaps H.P.
        • Ehnert S.
        • Nussler A.K.
        Imaging cell viability on non-transparent scaffolds - using the example of a novel knitted titanium implant.
        J. Vis. Exp., 2016
        • Wachowski M.M.
        • Weiland J.
        • Wagner M.
        • Gezzi R.
        • Kubein-Meesenburg D.
        • Nagerl H.
        Kinematics of cervical segments C5/C6 in axial rotation before and after total disc arthroplasty.
        Eur. Spine J. 2017; 26: 2425-2433
        • Welke B.
        • Schwarze M.
        • Hurschler C.
        • Book T.
        • Magdu S.
        • Daentzer D.
        In vitro investigation of a new dynamic cervical implant: comparison to spinal fusion and total disc replacement.
        Eur. Spine J. 2016; 25: 2247-2254
        • Wilke H.J.
        • Wenger K.
        • Claes L.
        Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants.
        Eur. Spine J. 1998; 7: 148-154
        • Wilke H.J.
        • Mehnert U.
        • Claes L.E.
        • Bierschneider M.M.
        • Jaksche H.
        • Boszczyk B.M.
        Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading.
        Spine. 2006; 31: 2934-2941