Microclimate: A critical review in the context of pressure ulcer prevention

      Highlights

      • An object on the skin surface provides an impedance to convective heat loss.
      • An object on the skin surface provides an impedance to evaporative moisture loss.
      • Microclimate is an effect-modifier or an indirect risk factor for pressure ulcer development.
      • Effects of ‘microclimate interventions’ on pressure ulcer prevention are unclear.
      • The term ‘microclimate management’ should not be used.

      Abstract

      Pressure ulcers are caused by sustained mechanical loading and deformation of the skin and subcutaneous layers between internal stiff anatomical structures and external surfaces or devices. In addition, the skin microclimate (temperature, humidity and airflow next to the skin surface) is an indirect pressure ulcer risk factor. Temperature and humidity affect the structure and function of the skin increasing or lowering possible damage thresholds for the skin and underlying soft tissues. From a pressure ulcer prevention research perspective, the effects of humidity and temperature next to the skin surface are inextricably linked to concurrent soft tissue deformation. Direct clinical evidence supporting the association between microclimate and pressure ulceration is sparse and of high risk of bias. Currently, it is recommended to keep the skin dry and cool and/or to allow recovery periods between phases of occlusion. The stratum corneum must be prevented from becoming overhydrated or from drying out but exact ranges of an acceptable microclimate are unknown. Therefore, vague terms like ‘microclimate management’ should be avoided but product and microclimate characteristics should be explicitly stated to allow an informed decision making. Pressure ulcer prevention interventions like repositioning, the use of special support surfaces, cushions, and prophylactic dressings are effective only if they reduce sustained deformations in soft tissues. This mode of action outweighs possible undesirable microclimate properties. As long as uncertainty exists efforts must be taken to use as less occlusive materials as possible. There seems to be individual intrinsic characteristics making patients more vulnerable to microclimate effects.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams M.J.
        • Briscoe B.J.
        • Johnson S.A.
        Friction and lubrication of human skin.
        Tribol. Lett. 2007; 26: 239-253
        • Agren M.S.
        • Wijesinghe C.
        Occlusivity and effects of two occlusive dressings on normal human skin.
        Acta Derm. Venereol. 1994; 74: 12-14
        • Aly R.
        • Shirley C.
        • Cunico B.
        • Maibach H.I.
        Effect of prolonged occlusion on the microbial flora, pH, carbon dioxide and transepidermal water loss on human skin.
        J. Invest. Dermatol. 1978; 71: 378-381
        • Angelidis I.K.
        • Lidman D.
        • Sjöber F.
        • Thorfinn J.
        Decubitus ulcer development: pressure alone increases tissue temperature.
        Eur. J. Plast. Surg. 2009; 32: 241-244
        • Aoi N.
        • Yoshimura K.
        • Kadono T.
        • Nakagami G.
        • Iizuka S.
        • Higashino T.
        • Araki J.
        • Koshima I.
        • Sanada H.
        Ultrasound assessment of deep tissue injury in pressure ulcers: possible prediction of pressure ulcer progression.
        Plast. Reconstr. Surg. 2009; 124: 540-550
        • Atlas E.
        • Yizhar Z.
        • Khamis S.
        • Slomka N.
        • Hayek S.
        • Gefen A.
        Utilization of the foot load monitor for evaluating deep plantar tissue stresses in patients with diabetes: proof-of-concept studies.
        Gait Posture. 2009; 29: 377-382
        • Baldwin K.M.
        Transcutaneous oximetry and skin surface temperature as objective measures of pressure ulcer risk.
        Adv. Skin Wound Care. 2001; 14: 26-31
        • Barel A.O.
        • Clarys P.
        Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: Evaporimeter and Tewameter.
        Skin Pharmacol. 1995; 8: 186-195
        • Berardesca E.
        • Vignoli G.P.
        • Fideli D.
        • Maibach H.
        Effect of occlusive dressings on the stratum corneum water holding capacity.
        Am J Med Sci. 1992; 304: 25-28
        • Berke C.T.
        Pathology and clinical presentation of friction injuries: case series and literature review.
        J. Wound Ostomy Cont. Nurs. 2015; 42: 47-61
        • Berlowitz D.R.
        • Brienza D.M.
        Are all pressure ulcers the result of deep tissue injury? A review of the literature.
        Ostomy Wound Manage. 2007; 53: 34-38
        • Bhushan B.
        • Chen S.
        • Ge S.
        Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy.
        Beilstein J. Nanotechnol. 2012; 3: 731-746
        • Black D.
        • Del Pozo A.
        • Lagarde J.M.
        • Gall Y.
        Seasonal variability in the biophysical properties of stratum corneum from different anatomical sites.
        Skin Res. Technol. 2000; 6: 70-76
        • Blatteis C.M.
        Age-dependent changes in temperature regulation – a mini review.
        Gerontology. 2012; 58: 289-295
        • Blattner C.M.
        • Coman G.
        • Blickenstaff N.R.
        • Maibach H.I.
        Percutaneous absorption of water in skin: a review.
        Rev. Environ. Health. 2014; 29: 175-180
        • Call E.
        • Pederson J.
        • Bill B.
        • Oberg C.
        • Ferguso-Pell M.
        Microclimate impact of prophylactic dressings using in vitro body analog method.
        Wounds. 2013; 25: 94-103
        • Chai C.Y.
        • Sadou O.
        • Worsley P.R.
        • Bader D.L.
        Pressure signatures can influence tissue response for individuals supported on an alternating pressure mattress.
        J. Tissue Viability. 2017; 26: 180-188
        • Chen C.P.
        • Hwang R.L.
        • Chang S.Y.
        • Lu Y.T.
        Effects of temperature steps on human skin physiology and thermal sensation response.
        Build. Environ. 2011; 46: 2387-2397
        • Clark M.
        • Romanelli M.
        • Reger S.I.
        • Ranganathan V.K.
        • Black J.
        • Dealey C.
        Microclimate in context, Pressure Ulcer Prevention.
        Wounds International, London2010: 19-25
        • Coleman S.
        • Gorecki C.
        • Nelson E.A.
        • Closs S.J.
        • Defloor T.
        • Halfens R.
        • Farrin A.
        • Brown J.
        • Schoonhoven L.
        • Nixon J.
        Patient risk factors for pressure ulcer development: systematic review.
        Int. J. Nurs. Stud. 2013; 50: 974-1003
        • Cravello B.
        • Ferri A.
        Relationships between skin properties and environmental parameters.
        Skin Res. Technol. 2008; 14: 180-186
        • Derler S.
        • Gerhardt L.C.
        Tribology of skin: review and analysis of experimental results for the friction coefficient of human skin.
        Tribol. Lett. 2012; 45: 1-27
        • Dobos G.
        • Gefen A.
        • Blume-Peytavi U.
        • Kottner J.
        Weight-bearing-induced changes in the microtopography and structural stiffness of human skin in vivo following immobility periods.
        Wound Repair Regen. 2015; 23: 37-43
        • Edstrom G.
        • Lundin G.
        • Wramner T.
        Investigations into the effect of hot, dry microclimate on peripheral circulation, etc., in arthritic patients.
        Ann. Rheum. Dis. 1948; 7: 76-82
        • Egawa M.
        • Oguri M.
        • Kuwahara T.
        • Takahashi M.
        Effect of exposure of human skin to a dry environment.
        Skin Res. Technol. 2002; 8: 212-218
        • Engebretsen K.A.
        • Johansen J.D.
        • Kezic S.
        • Linneberg A.
        • Thyssen J.P.
        The effect of environmental humidity and temperature on skin barrier function and dermatitis.
        J. Eur. Acad. Dermatol. Venereol. 2016; 30: 223-249
        • Faergemann J.
        • Aly R.
        • Wilson D.R.
        • Maibach H.I.
        Skin occlusion: effect on Pityrosporum orbiculare, skin PCO2, pH, transepidermal water loss, and water content.
        Arch. Dermatol. Res. 1983; 275: 383-387
        • Ferguson-Pell M.
        • Hirose H.
        • Nicholson G.
        • Call E.
        Thermodynamic rigid cushion loading indenter: a buttock-shaped temperature and humidity measurement system for cushioning surfaces under anatomical compression conditions.
        J. Rehabil. Res. Dev. 2009; 46: 945-956
        • Figliola R.S.
        A proposed method for quantifying low-air-loss mattress performance by moisture transport.
        Ostomy Wound Manage. 2003; 49: 32-42
        • Fisher S.V.
        • Szymke T.E.
        • Apte S.Y.
        • Kosiak M.
        Wheelchair cushion effect on skin temperature.
        Arch. Phys. Med. Rehabil. 1978; 59: 68-72
        • Flam E.
        • Isayeva E.
        • Kipervas Y.
        • Shklyarevsky V.
        • Raab L.
        Skin temperature and moisture management with a low air loss surface.
        Ostomy Wound Manage. 1995; 41: 50-56
        • Fluhr J.W.
        • Praessler J.
        • Akengin A.
        • Fuchs S.M.
        • Kleesz P.
        • Grieshaber R.
        • Elsner P.
        Air flow at different temperatures increases sodium lauryl sulphate-induced barrier disruption and irritation in vivo.
        Br. J. Dermatol. 2005; 152: 1228-1234
        • Fluhr J.W.
        • Darlenski R.
        • Angelova-Fischer I.
        • Tsankov N.
        • Basketter D.
        Skin irritation and sensitization: mechanisms and new approaches for risk assessment. 1. Skin irritation.
        Skin Pharmacol. Physiol. 2008; 21: 124-135
        • Forriez O.
        • Masseline J.
        • Coadic D.
        • David V.
        • Trouiller P.
        • Sztrymf B.
        Efficacy and safety of a new coverlet device on skin microclimate management: a pilot study in critical care patients.
        J. Wound Care. 2017; 26: 51-57
        • Freeto T.
        • Cypress A.
        • Amalraj S.
        • Yusufishaq M.S.
        • Bogie K.M.
        Development of a sitting microenvironment simulator for wheelchair cushion assessment.
        J. Tissue Viability. 2016; 25: 175-179
        • Garcia-Fernandez F.P.
        • Soldevilla Agreda J.J.
        • Pancorbo-Hidalgo P.L.
        • Verdu-Soriano J.
        • Lopez Casanova P.
        • Rodriguez-Palma M.
        Classification of dependence-related skin lesions: a new proposal.
        J. Wound Care. 2016; 25: 26, 28-32
        • Geerligs M.
        • Oomens C.
        • Ackermans P.
        • Baaijens F.
        • Peters G.
        Linear shear response of the upper skin layers.
        Biorheology. 2011; 48: 229-245
        • Gefen A.
        How do microclimate factors affect the risk for superficial pressure ulcers: a mathematical modeling study.
        J. Tissue Viability. 2011; 20: 81-88
        • Gefen A.
        • Kottner J.
        • Santamaria N.
        Clinical and biomechanical perspectives on pressure injury prevention research: the case of prophylactic dressings.
        Clin. Biomech. (Bristol, Avon). 2016; 38: 29-34
        • Gerhardt L.C.
        • Strassle V.
        • Lenz A.
        • Spencer N.D.
        • Derler S.
        Influence of epidermal hydration on the friction of human skin against textiles.
        J. R. Soc. Interface. 2008; 5: 1317-1328
        • Gioia F.
        • Celleno L.
        The dynamics of transepidermal water loss (TEWL) from hydrated skin.
        Skin Res. Technol. 2002; 8: 178-186
        • Haddow A.J.
        • Gillett J.D.
        • Highton R.B.
        The mosquitoes of Bwamba County, Uganda; the vertical distribution and biting-cycle of mosquitoes in rain-forest, with further observations on microclimate.
        Bull. Entomol. Res. 1947; 37: 301-330
        • Haftek M.
        Stratum corneum histopathology.
        in: Humbert P. Agache's Measuring the Skin. Springer, Switzerland2017: 245-254
        • Hahnel E.
        • Blume-Peytavi U.
        • Trojahn C.
        • Dobos G.
        • Stroux A.
        • Garcia Bartels N.
        • Jahnke I.
        • Lichterfeld-Kottner A.
        • Neels-Herzmann H.
        • Klasen A.
        • Kottner J.
        The effectiveness of standardized skin care regimens on skin dryness in nursing home residents: a randomized controlled parallel-group pragmatic trial.
        Int. J. Nurs. Stud. 2017; 70: 1-10
        • Hahnel E.
        • Lichterfeld A.
        • Blume-Peytavi U.
        • Kottner J.
        The epidemiology of skin conditions in the aged: a systematic review.
        J. Tissue Viability. 2017; 26: 20-28
        • Hartmann A.A.
        Effect of occlusion on resident flora, skin-moisture and skin-pH.
        Arch. Dermatol. Res. 1983; 275: 251-254
        • Hashiguchi N.
        • Takeda A.
        • Yasuyama Y.
        • Chishaki A.
        • Tochihara Y.
        Effects of 6-h exposure to low relative humidity and low air pressure on body fluid loss and blood viscosity.
        Indoor Air. 2013; 23: 430-436
        • Hatje L.K.
        • Richter C.
        • Blume-Peytavi U.
        • Kottner J.
        Blistering time as a parameter for the strength of dermoepidermal adhesion: a systematic review and meta-analysis.
        Br. J. Dermatol. 2015; 172: 323-330
        • Herrman E.C.
        • Knapp C.F.
        • Donofrio J.C.
        • Salcido R.
        Skin perfusion responses to surface pressure-induced ischemia: implication for the developing pressure ulcer.
        J. Rehabil. Res. Dev. 1999; 36: 109-120
        • Iaizzo P.A.
        • Kveen G.L.
        • Kokate J.Y.
        • Leland K.J.
        • Hansen G.L.
        • Sparrow E.M.
        Prevention of pressure ulcers by focal cooling - histological assessment in a porcine model.
        in: Wounds–a Compendium of Clinical Research and Practice. 7. 1995: 161-169
        • Igaki M.
        • Higashi T.
        • Hamamoto S.
        • Kodama S.
        • Naito S.
        • Tokuhara S.
        A study of the behavior and mechanism of thermal conduction in the skin under moist and dry heat conditions.
        Skin Res. Technol. 2014; 20: 43-49
        • Illigens B.M.
        • Gibbons C.H.
        Sweat testing to evaluate autonomic function.
        Clin. Auton. Res. 2009; 19: 79-87
        • Imhof R.E.
        • De Jesus M.E.
        • Xiao P.
        • Ciortea L.I.
        • Berg E.P.
        Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance.
        Int. J. Cosmet. Sci. 2009; 31: 97-118
        • Jan Y.K.
        • Lee B.
        • Liao F.
        • Foreman R.D.
        Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations.
        Physiol. Meas. 2012; 33: 1733-1745
        • Kokate J.Y.
        • Leland K.J.
        • Held A.M.
        • Hansen G.L.
        • Kveen G.L.
        • Johnson B.A.
        • Wilke M.S.
        • Sparrow E.M.
        • Iaizzo P.A.
        Temperature-modulated pressure ulcers: a porcine model.
        Arch. Phys. Med. Rehabil. 1995; 76: 666-673
        • Kottner J.
        • Balzer K.
        Do pressure ulcer risk assessment scales improve clinical practice?.
        J. Multidiscip. Healthc. 2010; 3: 103-111
        • Kottner J.
        • Beeckman D.
        Incontinence-associated dermatitis and pressure ulcers in geriatric patients.
        G. Ital. Dermatol. Venereol. 2015; 150: 717-729
        • Kottner J.
        • Dassen T.
        • Lahmann N.
        Prevalence of deep tissue injuries in hospitals and nursing homes: two cross-sectional studies.
        Int. J. Nurs. Stud. 2010; 47: 665-670
        • Kottner J.
        • Wilborn D.
        • Dassen T.
        Frequency of pressure ulcers in the paediatric population: a literature review and new empirical data.
        Int. J. Nurs. Stud. 2010; 47: 1330-1340
        • Kottner J.
        • Gefen A.
        • Lahmann N.
        Weight and pressure ulcer occurrence: a secondary data analysis.
        Int. J. Nurs. Stud. 2011; 48: 1339-1348
        • Kottner J.
        • Lichterfeld A.
        • Blume-Peytavi U.
        Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis.
        Arch. Dermatol. Res. 2013; 305: 315-323
        • Kottner J.
        • Ludriksone L.
        • Garcia Bartels N.
        • Blume-Peytavi U.
        Do repeated skin barrier measurements influence each other's results? An explorative study.
        Skin Pharmacol. Physiol. 2014; 27: 90-96
        • Kottner J.
        • Dobos G.
        • Andruck A.
        • Trojahn C.
        • Apelt J.
        • Wehrmeyer H.
        • Richter C.
        • Blume-Peytavi U.
        Skin response to sustained loading: a clinical explorative study.
        J. Tissue Viability. 2015; 24: 114-122
        • Kottner J.
        • Kanti V.
        • Dobos G.
        • Hahnel E.
        • Lichterfeld-Kottner A.
        • Richter C.
        • Hillmann K.
        • Vogt A.
        • Blume-Peytavi U.
        The effectiveness of using a bath oil to reduce signs of dry skin: a randomized controlled pragmatic study.
        Int. J. Nurs. Stud. 2017; 65: 17-24
        • Kottner J.
        • Vogt A.
        • Lichterfeld A.
        • Blume-Peytavi U.
        Transepidermal water loss in young and aged healthy humans.
        in: Farage M.A. Textbook of Aging Skin. Springer, 2017
        • Kovalev A.E.
        • Dening K.
        • Persson B.N.
        • Gorb S.N.
        Surface topography and contact mechanics of dry and wet human skin.
        Beilstein J. Nanotechnol. 2014; 5: 1341-1348
        • Kwan M.P.
        • Tam E.W.
        • Lo S.C.
        • Leung M.C.
        • Lau R.Y.
        The time effect of pressure on tissue viability: investigation using an experimental rat model.
        Exp. Biol. Med. (Maywood). 2007; 232: 481-487
        • Lachenbruch C.
        Skin cooling surfaces: estimating the importance of limiting skin temperature.
        Ostomy Wound Manage. 2005; 51: 70-79
        • Lachenbruch C.
        A laboratory study comparing skin temperature and fluid loss on air-fluidized therapy, low-air-loss, and foam support surfaces.
        Ostomy Wound Manage. 2010; 56: 52-60
        • Lachenbruch C.
        • Tzen Y.T.
        • Brienza D.M.
        • Karg P.E.
        • Lachenbruch P.A.
        The relative contributions of interface pressure, shear stress, and temperature on tissue ischemia: a cross-sectional pilot study.
        Ostomy Wound Manage. 2013; 59: 25-34
        • Lboutounne Y.
        • Silva J.
        • Pazart L.
        • Berard M.
        • Muret P.
        • Humbert P.
        Microclimate next to the skin: influence on percutaneous absorption of caffeine (ex-vivo study).
        Skin Res. Technol. 2014; 20: 293-298
        • Lechner A.
        • Lahmann N.
        • Neumann K.
        • Blume-Peytavi U.
        • Kottner J.
        Dry skin and pressure ulcer risk: a multi-center cross-sectional prevalence study in German hospitals and nursing homes.
        Int. J. Nurs. Stud. 2017; 73: 63-69
        • Lee B.
        • Benyajati S.
        • Woods J.A.
        • Jan Y.K.
        Effect of local cooling on pro-inflammatory cytokines and blood flow of the skin under surface pressure in rats: feasibility study.
        J. Tissue Viability. 2014; 23: 69-77
        • Levy A.
        • Gefen A.
        Computer Modeling studies to assess whether a prophylactic dressing reduces the risk for deep tissue injury in the heels of supine patients with diabetes.
        Ostomy Wound Manage. 2016; 62: 42-52
        • Levy A.
        • Frank M.B.
        • Gefen A.
        The biomechanical efficacy of dressings in preventing heel ulcers.
        J. Tissue Viability. 2015; 24: 1-11
        • Levy A.
        • Schwartz D.
        • Gefen A.
        The contribution of a directional preference of stiffness to the efficacy of prophylactic sacral dressings in protecting healthy and diabetic tissues from pressure injury: computational modelling studies.
        Int. Wound J. 2017; 14: 1370-1377
        • Li X.
        • Johnson R.
        • Weinstein B.
        • Wilder E.
        • Smith E.
        • Kasting G.B.
        Dynamics of water transport and swelling in human stratum corneum.
        Chem. Eng. Sci. 2015; 138: 164-172
        • Li X.
        • Johnson R.
        • Kasting G.B.
        On the variation of water diffusion coefficient in stratum corneum with water content.
        J. Pharm. Sci. 2016; 105: 1141-1147
        • Liu Z.
        • Cascioli V.
        • Heusch A.I.
        • McCarthy P.W.
        Studying thermal characteristics of seating materials by recording temperature from 3 positions at the seat-subject interface.
        J. Tissue Viability. 2011; 20: 73-80
        • Liu X.
        • Gao Y.
        • Zhang Y.
        • Wang X.
        Variation in skin biology to climate in Shanghai, China.
        Cutan. Ocul. Toxicol. 2017; 36: 231-236
        • Mahoney M.
        • Rozenboom B.
        • Doughty D.
        Challenges in classification of gluteal cleft and buttocks wounds: consensus session reports.
        J. Wound Ostomy Cont. Nurs. 2013; 40: 239-245
        • Marples R.R.
        • Kligman A.M.
        Growth of bacteria under adhesive tapes.
        Arch. Dermatol. 1969; 99: 107-110
        • Mathias C.G.
        • Wilson D.M.
        • Maibach H.I.
        Transepidermal water loss as a function of skin surface temperature.
        J. Invest. Dermatol. 1981; 77: 219-220
        • Mayrovitz H.N.
        • Bernal M.
        • Brlit F.
        • Desfor R.
        Biophysical measures of skin tissue water: variations within and among anatomical sites and correlations between measures.
        Skin Res. Technol. 2013; 19: 47-54
        • McInnes E.
        • Jammali-Blasi A.
        • Bell-Syer S.E.
        • Dumville J.C.
        • Middleton V.
        • Cullum N.
        Support surfaces for pressure ulcer prevention.
        Cochrane Database Syst Rev. 2015; CD001735
        • McLellan K.
        • Petrofsky J.S.
        • Bains G.
        • Zimmerman G.
        • Prowse M.
        • Lee S.
        The effects of skin moisture and subcutaneous fat thickness on the ability of the skin to dissipate heat in young and old subjects, with and without diabetes, at three environmental room temperatures.
        Med. Eng. Phys. 2009; 31: 165-172
        • McNabb L.J.
        • Hyatt J.
        Effect of an air-fluidized bed on insensible water loss.
        Crit. Care Med. 1987; 15: 161-162
        • Meijer J.H.
        • Schut G.L.
        • Ribbe M.W.
        • Goovaerts H.G.
        • Nieuwenhuys R.
        • Reulen J.P.
        • Schneider H.
        Method for the measurement of susceptibility to decubitus ulcer formation.
        Med. Biol. Eng. Comput. 1989; 27: 502-506
        • Moore Z.E.
        • Cowman S.
        Repositioning for treating pressure ulcers.
        Cochrane Database Syst. Rev. 2015; 1CD006898
        • Nakagami G.
        • Sanada H.
        • Konya C.
        • Kitagawa A.
        • Tadaka E.
        • Matsuyama Y.
        Evaluation of a new pressure ulcer preventive dressing containing ceramide 2 with low frictional outer layer.
        J. Adv. Nurs. 2007; 59: 520-529
        • National Pressure Ulcer Advisory Panel
        • European Pressure Ulcer Advisory Panel, Alliance
        • P.P.P.I
        Prevention and Treatment of Pressure Ulcers: Clinical Practice Guideline.
        Cambridge Media, Osborne Park, Western Australia2014
        • Ohno H.
        • Nishimura N.
        • Yamada K.
        • Shimizu Y.
        • Iwase S.
        • Sugenoya J.
        • Sato M.
        Effects of water nanodroplets on skin moisture and viscoelasticity during air-conditioning.
        Skin Res. Technol. 2013; 19: 375-383
        • Oomens C.W.
        • Bader D.L.
        • Loerakker S.
        • Baaijens F.
        Pressure induced deep tissue injury explained.
        Ann. Biomed. Eng. 2015; 43: 297-305
        • Papir Y.S.
        • Hsu K.H.
        • Wildnauer R.H.
        The mechanical properties of stratum corneum. I. The effect of water and ambient temperature on the tensile properties of newborn rat stratum corneum.
        Biochim. Biophys. Acta. 1975; 399: 170-180
        • Patel S.
        • Knapp C.F.
        • Donofrio J.C.
        • Salcido R.
        Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development.
        J. Rehabil. Res. Dev. 1999; 36: 189-201
        • Pedersen L.
        • Jemec G.B.
        Mechanical properties and barrier function of healthy human skin.
        Acta Derm. Venereol. 2006; 86: 308-311
        • Persson B.N.J.
        • Kovalev A.
        • Gorb S.N.
        Contact mechanics and friction on dry and wet human skin.
        Tribol. Lett. 2013; 50: 17-30
        • Petrofsky J.
        • Bains G.
        • Prowse M.
        • Gunda S.
        • Berk L.
        • Raju C.
        • Ethiraju G.
        • Vanarasa D.
        • Madani P.
        Does skin moisture influence the blood flow response to local heat? A re-evaluation of the Pennes model.
        J. Med. Eng. Technol. 2009; 33: 532-537
        • Petrofsky J.
        • Berk L.
        • Alshammari F.
        • Lee H.
        • Hamdan A.
        • Yim J.E.
        • Patel D.
        • Kodawala Y.
        • Shetye G.
        • Chen W.T.
        • Moniz H.
        • Pathak K.
        • Somanaboina K.
        • Desai R.
        • Dave B.
        • Malthane S.
        • Alshaharani M.
        • Neupane S.
        • Shenoy S.
        • Nevgi B.
        • Cho S.
        • Al-Nakhli H.
        The effect of moist air on skin blood flow and temperature in subjects with and without diabetes.
        Diabetes Technol. Ther. 2012; 14: 105-116
        • Petrofsky J.S.
        • Berk L.
        • Alshammari F.
        • Lee H.
        • Hamdan A.
        • Yim J.E.
        • Kodawala Y.
        • Patel D.
        • Nevgi B.
        • Shetye G.
        • Moniz H.
        • Chen W.T.
        • Alshaharani M.
        • Pathak K.
        • Neupane S.
        • Somanaboina K.
        • Shenoy S.
        • Cho S.
        • Dave B.
        • Desai R.
        • Malthane S.
        • Al-Nakhli H.
        The interrelationship between air temperature and humidity as applied locally to the skin: the resultant response on skin temperature and blood flow with age differences.
        Med. Sci. Monit. 2012; 18: CR201-208
        • Petrofsky J.
        • Berk L.
        • Bains G.
        • Khowailed I.A.
        • Hui T.
        • Granado M.
        • Laymon M.
        • Lee H.
        Moist heat or dry heat for delayed onset muscle soreness.
        J. Clin. Med. Res. 2013; 5: 416-425
        • Pierard G.E.
        • Elsner P.
        • Marks R.
        • Masson P.
        • Paye M.
        • EEMCO Group
        EEMCO guidance for the efficacy assessment of antiperspirants and deodorants.
        Skin Pharmacol. Appl. Ski. Physiol. 2003; 16: 324-342
        • Posada-Moreno P.
        • Losa Iglesias M.E.
        • Becerro de Bengoa Vallejo R.
        • Soriano I.O.
        • Zaragoza-Garcia I.
        • Martinez-Rincon C.
        Influence of different bed support surface covers on skin temperature.
        Contemp. Nurse. 2011; 39: 206-220
        • Potts R.O.
        • Francoeur M.L.
        Lipid biophysics of water loss through the skin.
        Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 3871-3873
        • Rapp M.P.
        • Bergstrom N.
        • Padhye N.S.
        Contribution of skin temperature regularity to the risk of developing pressure ulcers in nursing facility residents.
        Adv. Skin Wound Care. 2009; 22: 506-513
        • Reger S.I.
        • Adams T.C.
        • Maklebust J.A.
        • Sahgal V.
        Validation test for climate control on air-loss supports.
        Arch. Phys. Med. Rehabil. 2001; 82: 597-603
        • Roaf R.
        The causation and prevention of bed sores.
        J. Tissue Viability. 2006; 16: 6-8
        • Roger K.
        • Liebi M.
        • Heimdal J.
        • Pham Q.D.
        • Sparr E.
        Controlling water evaporation through self-assembly.
        Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 10275-10280
        • Rogiers V.
        • EEMCO Group
        EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences.
        Skin Pharmacol. Appl. Ski. Physiol. 2001; 14: 117-128
        • Rothman S.
        Physiology and Biochemistry of the Skin.
        The University of Chigaco Press, Chicago1954
        • Saadatmand M.
        • Stone K.J.
        • Vega V.N.
        • Felter S.
        • Ventura S.
        • Kasting G.
        • Jaworska J.
        Skin hydration analysis by experiment and computer simulations and its implications for diapered skin.
        Skin Res. Technol. 2017; 23: 500-513
        • Sae-Sia W.
        • Wipke-Tevis D.D.
        • Williams D.A.
        Elevated sacral skin temperature (T(s)): a risk factor for pressure ulcer development in hospitalized neurologically impaired Thai patients.
        Appl. Nurs. Res. 2005; 18: 29-35
        • Sae-Sia W.
        • Wipke-Tevis D.D.
        • Williams D.A.
        The effect of clinically relevant pressure duration on sacral skin blood flow and temperature in patients after acute spinal cord injury.
        Arch. Phys. Med. Rehabil. 2007; 88: 1673-1680
        • Sato J.
        • Yanai M.
        • Hirao T.
        • Denda M.
        Water content and thickness of the stratum corneum contribute to skin surface morphology.
        Arch. Dermatol. Res. 2000; 292: 412-417
        • Savonnet L.
        • Wang X.
        • Duprey S.
        Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review.
        Comput. Methods Biomech. Biomed. Engin. 2018; 21: 379-388
        • Scales J.T.
        • Hopkins L.A.
        Patient-support system using low-pressure air.
        Lancet. 1971; 2: 885-888
        • Schafer P.
        • Bewick-Sonntag C.
        • Capri M.G.
        • Berardesca E.
        Physiological changes in skin barrier function in relation to occlusion level, exposure time and climatic conditions.
        Skin Pharmacol. Appl. Ski. Physiol. 2002; 15: 7-19
        • Schario M.
        • Tomova-Simitchieva T.
        • Lichterfeld A.
        • Herfert H.
        • Dobos G.
        • Lahmann N.
        • Blume-Peytavi U.
        • Kottner J.
        Effects of two different fabrics on skin barrier function under real pressure conditions.
        J. Tissue Viability. 2017; 26: 150-155
        • Scheel-Sailer A.
        • Frotzler A.
        • Mueller G.
        • Annaheim S.
        • Rossi R.M.
        • Derler S.
        Biophysical skin properties of grade 1 pressure ulcers and unaffected skin in spinal cord injured and able-bodied persons in the unloaded sacral region.
        J. Tissue Viability. 2017; 26: 89-94
        • Schmidt K.D.
        • Chan C.W.
        Thermoregulation and fever in normal persons and in those with spinal cord injuries.
        Mayo Clin. Proc. 1992; 67: 469-475
        • Serup J.
        EEMCO guidance for the assessment of dry skin (xerosis) and ichthyosis: clinical scoring systems.
        Skin Res. Technol. 1995; 1: 109-114
        • Shaked E.
        • Gefen A.
        Modeling the effects of moisture-related skin-support friction on the risk for superficial pressure ulcers during patient repositioning in bed.
        Front. Bioeng. Biotechnol. 2013; 1: 9
        • Shibasaki M.
        • Crandall C.G.
        Mechanisms and controllers of eccrine sweating in humans.
        Front. Biosci. (Schol. Ed.). 2010; : 685-696
        • Shoham N.
        • Gefen A.
        Deformations, mechanical strains and stresses across the different hierarchical scales in weight-bearing soft tissues.
        J. Tissue Viability. 2012; 21: 39-46
        • Slomka N.
        • Gefen A.
        Relationship between strain levels and permeability of the plasma membrane in statically stretched myoblasts.
        Ann. Biomed. Eng. 2012; 40: 606-618
        • Sopher R.
        • Gefen A.
        Effects of skin wrinkles, age and wetness on mechanical loads in the stratum corneum as related to skin lesions.
        Med. Biol. Eng. Comput. 2011; 49: 97-105
        • Stewart S.F.
        • Palmieri V.
        • Cochran G.V.
        Wheelchair cushion effect on skin temperature, heat flux, and relative humidity.
        Arch. Phys. Med. Rehabil. 1980; 61: 229-233
        • Stockton L.
        • Rithalia S.
        Pressure-reducing cushions: perceptions of comfort from the wheelchair users' perspective using interface pressure, temperature and humidity measurements.
        J. Tissue Viability. 2009; 18: 28-35
        • Stone A.
        • Brienza D.
        • Call E.
        • Fontaine R.
        • Goldberg M.
        • Hong K.Z.
        • Jordan R.
        • Lachenbruch C.
        • LaFleche P.
        • Sylvia C.
        Standardizing support surface testing and reporting: a national pressure ulcer advisory panel executive summary.
        J. Wound Ostomy Cont. Nurs. 2015; 42: 445-449
        • Tagami H.
        • Kobayashi H.
        • Zhen X.S.
        • Kikuchi K.
        Environmental effects on the functions of the stratum corneum.
        J. Investig. Dermatol. Symp. Proc. 2001; 6: 87-94
        • Takahashi M.
        • Yamada M.
        • Machida Y.
        • Y T.
        A new method to evaluate the sofenting effect of cosmetic ingredients on the skin.
        J. Soc. Cosmet. Chem. 1984; 35: 171-181
        • Tomova-Simitchieva T.
        • Akdeniz M.
        • Blume-Peytavi U.
        • Lahmann N.
        • Kottner J.
        The epidemiology of pressure ulcer in Germany: systematic review.
        Gesundheitswesen. 2018; https://doi.org/10.1055/s-0043-122069
        • Tomova-Simitchieva T.
        • Lichterfeld-Kottner A.
        • Blume-Peytavi U.
        • Kottner J.
        Comparing the effects of three different pressure ulcer prevention support surfaces on the structure and function of heel and sacral skin: an exploratory cross-over trial.
        Int. Wound J. 2018; 15: 429-437
        • Tzen Y.T.
        • Brienza D.M.
        • Karg P.
        • Loughlin P.
        Effects of local cooling on sacral skin perfusion response to pressure: implications for pressure ulcer prevention.
        J. Tissue Viability. 2010; 19: 86-97
        • Warner R.R.
        • Stone K.J.
        • Boissy Y.L.
        Hydration disrupts human stratum corneum ultrastructure.
        J. Invest. Dermatol. 2003; 120: 275-284
        • Waterhouse F.L.
        Humidity and temperature in grass microclimates with reference to insolation.
        Nature. 1950; 166: 232-233
        • Webb R.C.
        • Pielak R.M.
        • Bastien P.
        • Ayers J.
        • Niittynen J.
        • Kurniawan J.
        • Manco M.
        • Lin A.
        • Cho N.H.
        • Malyrchuk V.
        • Balooch G.
        • Rogers J.A.
        Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators.
        PLoS One. 2015; 10e0118131
        • Wilkes G.L.
        • Brown I.A.
        • Wildnauer R.H.
        The biomechanical properties of skin.
        CRC Crit. Rev. Bioeng. 1973; 1: 453-495
        • Williamson R.
        • Lachenbruch C.
        • VanGilder C.
        A laboratory study examining the impact of linen use on low-air-loss support surface heat and water vapor transmission rates.
        Ostomy Wound Manage. 2013; 59: 32-41
        • Worsley P.
        • Bader D.
        A modified evaluation of spacer fabric and airflow technologies for controlling the microclimate at the loaded support interface.
        Text. Res. J. 2018; https://doi.org/10.1177/0040517518786279
        • Worsley P.R.
        • Parsons B.
        • Bader D.L.
        An evaluation of fluid immersion therapy for the prevention of pressure ulcers.
        Clin. Biomech. (Bristol, Avon). 2016; 40: 27-32
        • Worsley P.R.
        • Prudden G.
        • Gower G.
        • Bader D.L.
        Investigating the effects of strap tension during non-invasive ventilation mask application: a combined biomechanical and biomarker approach.
        J. Med. Devices (Auckl). 2016; 9: 409-417
        • Wu K.S.
        • van Osdol W.W.
        • Dauskardt R.H.
        Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment.
        Biomaterials. 2006; 27: 785-795
        • Yaggie J.A.
        • Niemi T.J.
        • Buono M.J.
        Adaptive sweat gland response after spinal cord injury.
        Arch. Phys. Med. Rehabil. 2002; 83: 802-805
        • Yeh P.
        • Chiou A.E.
        • Hong J.
        Optical interconnection using photorefractive dynamic holograms.
        Appl. Opt. 1988; 27: 2093-2096
        • Yoshimura M.
        • Nakagami G.
        • Iizaka S.
        • Yoshida M.
        • Uehata Y.
        • Kohno M.
        • Kasuya Y.
        • Mae T.
        • Yamasaki T.
        • Sanada H.
        Microclimate is an independent risk factor for the development of intraoperatively acquired pressure ulcers in the park-bench position: a prospective observational study.
        Wound Repair Regen. 2015; 23: 939-947
        • Yusuf S.
        • Okuwa M.
        • Shigeta Y.
        • Dai M.
        • Iuchi T.
        • Rahman S.
        • Usman A.
        • Kasim S.
        • Sugama J.
        • Nakatani T.
        • Sanada H.
        Microclimate and development of pressure ulcers and superficial skin changes.
        Int. Wound J. 2015; 12: 40-46
        • Zeevi T.
        • Lev y.A.
        • Brauner N.
        • Gefen A.
        Effects of ambient conditions on the risk for pressure injuries in bedridden patients – multiphysics modeling of microclimate.
        Int. Wound J. 2018; 15: 429-437