Advertisement

The critical size of focal articular cartilage defects is associated with strains in the collagen fibers

      Highlights

      • A FE study on the effects of a focal cartilage defect on the surrounding cartilage
      • Small increases of defect size allow a well-controlled investigation of this effect.
      • A sophisticated and validated composition based cartilage material model is used.
      • Collagen fiber strains increase abruptly with small defect size increases.
      • Critical defect size is associated with collagen fiber strains.

      Abstract

      The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations.
      Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8 mm wide defects and 8 mm implant cases were performed. Impact, a load increase to 2 MPa in 1 ms, and creep loading, a constant load of 0.5 MPa for 900 s, scenarios were simulated. A composition-based material model for articular cartilage was employed.
      Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aspden R.M.
        • Jeffrey J.E.
        • Burgin L.V.
        Impact loading of articular cartilage.
        Osteoarthr. Cartil. 2002; 10: 588-589
        • Barthelemy V.M.P.
        • van Rijsbergen M.M.
        • Wilson W.
        • Huyghe J.M.
        • van Rietbergen B.
        • Ito K.
        A computational spinal motion spinal motion segment model incorporating a matrix composition-based model of the intervertebral disc.
        J. Mech. Behav. Biomed. Mater. 2016; 54: 194-204
        • Benninghoff A.
        Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion.
        Zeitschriftfür Zellforschung und Mikroskopische Anatomie. 1925; 2: 783-862
        • Butler D.L.
        • Grood E.S.
        • Noyes F.R.
        • Zernicke R.F.
        Biomechanics of ligaments and tendons.
        Exerc. Sport Sci. Rev. 1978; 6: 125-181
        • Cleather D.J.
        • Goodwin J.E.
        • Bull A.M.
        Hip and knee joint loading during vertical jumping and push jerking.
        Clin. Biomech. 2013; 28 (Epub 2012 Nov 10): 98-103https://doi.org/10.1016/j.clinbiomech.2012.10.006
        • Convery F.R.
        • Akeson W.H.
        • Keown G.H.
        The repair of large osteochondral defects. An experimental study in horses.
        Clin. Orthop. Relat. Res. 1972; 82: 253-262
        • Dabiri R.Y.
        • Li L.
        Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.
        Int. J. Numer. Methods Biomed. Eng. 2015; 31 (Epub 2015 Apr 14, Jun)https://doi.org/10.1002/cnm.2713
        • Fukubayashi T.
        • Kurosawa H.
        The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints.
        Acta Orthop. Scand. 1980; 51: 871-879
        • Gelber A.C.
        • Hochberg M.C.
        • Mead L.A.
        • Wang N.-Y.
        • Wigley F.M.
        • Klag M.J.
        Joint injury in young adults and risk for subsequent knee and hip osteoarthritis.
        Ann. Intern. Med. 2000; 133: 321-328https://doi.org/10.7326/0003-4819-133-5-200009050-00007
        • Guettler J.
        • Demetropoulos C.K.
        • Yang K.H.
        • Jurist K.
        Osteochondral defects in the human knee. Influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage.
        Am. J. Sports Med. 2004; 32: 1451-1458
        • Halonen K.S.
        • Mononen M.E.
        • Jurvelin J.S.
        • Toyräs J.
        • Salo J.
        • Korhonen R.K.
        Deformation of articular cartilage during static loading of a knee joint – experimental and finite element analysis.
        J. Biomech. 2014; 47: 2467-2474https://doi.org/10.1016/j.jbiomech.2014.04.013
        • Heir S.
        • Nerhus T.K.
        • Røtterud J.H.
        • Løken S.
        • Ekeland A.
        • Engebretsen L.
        • et al.
        Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis a comparison of knee injury and osteoarthritis outcome Score in 4 patient categories scheduled for knee surgery.
        Am. J. Sports Med. 2010; 38: 231-237https://doi.org/10.1177/0363546509352157
        • Henak C.R.
        • Ateshian G.A.
        • Weiss J.A.
        Finite element prediction of transchondral stress and strain in the human hip.
        J. Biomech. Eng. 2014; 136021021https://doi.org/10.1115/1.4026101
        • Hjelle K.
        • Solheim E.
        • Strand T.
        • Muri R.
        • Brittberg M.
        Articular cartilage defects in 1,000 knee rthroscopies.
        Arthroscopy. 2002; 18: 730-734
        • Hosseini S.M.
        • Wilson W.
        • Ito K.
        • van Donkelaar C.C.
        A numerical model to study mechanically induced initiation and progression of damage in articular cartilage.
        Osteoarthr. Cartil. 2014; 22: 95-103https://doi.org/10.1016/j.joca.2013.10.010
        • Huang C.Y.
        • Stankiewicz A.
        • Atheshian G.A.
        • Mow V.C.
        Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation.
        J. Biomech. 2005; 38: 799-809
        • Hunt K.J.
        • Lee A.T.
        • Lindsey D.P.
        • Slikker 3rd, W.
        • Chou L.B.
        Osteochondral lesions of the talus: effect of size and plantarflexion angle on ankle joint stresses.
        Am. J. Sports Med. 2012; 40: 895-901https://doi.org/10.1177/0363546511434404
        • Hunziker E.B.
        Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects.
        Osteoarthr. Cartil. 2002; 10: 432-463
        • Kempson G.E.
        • Muir H.
        • Pollard C.
        • Tuke M.
        The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans.
        Biochim. Biophys. Acta. 1973; 297: 465-472
        • Kuster M.S.
        • Wood G.A.
        • Stachowiak G.W.
        • Gachter A.
        Joint load considerations in total knee replacement.
        J. Bone Joint Surg. (Br.). 1997; 79: 109-113
        • Legerlotz K.
        • Riley G.P.
        • Screen H.R.
        Specimen dimensions influence the measurement of material properties in tendon fascicles.
        J. Biomech. 2010; 43 (26): 2274-2280https://doi.org/10.1016/j.jbiomech.2010.04.040
        • Manda K.
        • Eriksson A.
        Time-dependent behavior of cartilage surrounding a metal implant for full-thickness cartilage defects of various sizes: a finite element study.
        Biomech. Model. Mechanobiol. 2012; 11: 731-742https://doi.org/10.1007/s10237-011-0346-7
        • Manda K.
        • Ryd L.
        • Eriksson A.
        Finite element simulations of a focal knee resurfacing implant applied to localized cartilage defects in a sheep model.
        J. Biomech. 2011; 44 (15): 794-801https://doi.org/10.1016/j.jbiomech.2010.12.026
        • Martinez-Carranza N.
        • Berg H.E.
        • Hultenby K.
        • Nurmi-Sandh H.
        • Ryd L.
        • Lagerstedt A.S.
        Focal knee resurfacing and effects of surgical precision on opposing cartilage. a pilot study on 12 sheep.
        Osteoarthr. Cartil. 2013; 21: 739-745
        • Messner K.
        • Gillquist J.
        Cartilage repair: a critical review.
        Acta Orthop. Scand. 1996; 67: 523-529
        • Mizuta H.
        • Kudo S.
        • Nakamura E.
        • Otsuka Y.
        • Takagi K.
        • Hiraki Y.
        Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage.
        Osteoarthr. Cartil. 2004; 12: 586-596
        • Moyer H.R.
        • Wang Y.
        • Farooque T.
        • Wick T.
        • Singh K.A.
        • Xie L.
        • Guldberg R.E.
        • Williams J.K.
        • Boyan B.D.
        • Schwartz Z.
        A new animal model for assessing cartilage repair and regeneration at a nonarticular site.
        Tissue Eng. Part A. 2010; 16: 2321-2330https://doi.org/10.1089/ten.TEA.2009.0245
        • Otsuka Y.
        • Mizuta H.
        • Takagi K.
        • et al.
        Requirement of fibroblast growth factor signaling for regeneration of epiphyseal morphology in rabbit full-thickness defects of articular cartilage.
        Develop. Growth Differ. 1997; 39: 143-156
        • Papaioannou G.
        • Demetropoulos C.K.
        • King Y.H.
        Predicting the effects of knee focal articular surface injury with a patient-specific finite element model.
        Knee. 2010; 17: 61-68https://doi.org/10.1016/j.knee.2009.05.001
        • Pena E.
        • Calvo B.
        • Martinez M.A.
        • Doblare M.
        Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation.
        Comput. Biol. Med. 2007; 37: 376-387
        • Roth V.
        • Mow V.C.
        The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age.
        J. Bone Joint Surg. Am. 1980; 62: 1102-1117
        • Schinhan M.
        • Gruber M.
        • Vavken P.
        • Dorotka R.
        • Samouh L.
        • Chiari C.
        • et al.
        Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee.
        J. Orthop. Res. 2012; 30: 214-220https://doi.org/10.1002/jor.21521
        • Shapiro F.
        • Koide S.
        • Glimcher M.J.
        Cell origin and differentiation in the repair full-thickness defects of articular cartilage.
        J. Bone Joint Surg. Am. 1993; 75: 532-553
        • Shen Z.L.
        • Dodge M.R.
        • Kahn H.
        • Ballarini R.
        • Eppell S.J.
        Stress-strain experiments on individual collagen fibrils.
        Biophys. J. 2008; 95: 3956-3963https://doi.org/10.1529/biophysj.107.124602
        • Solheim E.
        • Krokeide A.M.
        • Melteig P.
        • Larsen A.
        • Strand T.
        • Brittberg M.
        Symptoms and function in patients with articular cartilage lesions in 1,000 knee arthroscopies.
        Knee Surg. Sports Traumatol. Arthrosc. 2016; 24 (May) (Epub 2014 Dec 13): 1610-1616https://doi.org/10.1007/s00167-014-3472-9
        • Venäläinen M.S.
        • Mononen M.E.
        • Salo J.
        • Räsänen L.P.
        • Jurvelin J.S.
        • Töryäs J.
        • Virén T.
        • Korhonen R.K.
        Quantitative Evaluation of the mechanical risks caused by focal cartilage defects in the knee.
        Sci Rep. 2016; 6 (2016 Nov 29): 37538https://doi.org/10.1038/srep37538
        • Wang Y.
        • Ding C.
        • Wluka A.E.
        • Davis S.
        • Ebeling P.R.
        • Jones G.
        • Cicuttini F.M.
        Factors affecting progression of knee cartilage defects in normal subjects over 2 years.
        Rheumatology (Oxford). 2006; 45: 79-84
        • Widuchowski W.
        • Widuchowski J.
        • Trzaska T.
        Articular cartilage defects: study of 25,124 knee arthroscopies.
        Knee. 2007; 14: 177-182
        • Wilson W.
        • van Donkelaar C.C.
        • van Rietbergen B.
        • Ito K.
        • Huiskes R.
        Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study.
        J. Biomech. 2004; 37: 357-366
        • Wilson W.
        • van Donkelaar C.C.
        • van Rietbergen B.
        • Huiskes R.
        A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
        J. Biomech. 2005; 38: 1195-1204
        • Wilson W.
        • van Burken C.
        • van Donkelaar C.C.
        • Buma P.
        • van Rietbergen B.
        • Huiskes R.
        Causes of mechanically induced collagen damage in articular cartilage.
        J. Orthop. Res. 2006; 24: 220-228
        • Wilson W.
        • Huyghe J.M.
        • van Donkelaar C.C.
        A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation.
        Osteoarthr. Cartil. 2006; 14: 554-560
        • Zitnay Z.L.
        • Li Y.
        • Reese S.P.
        • San B.-H.
        • Yu S.M.
        • Weiss J.A.
        SB3C 2015-628.
        2015