Advertisement

A new approach to prevent contralateral hip fracture: Evaluation of the effectiveness of a fracture preventing implant

      Highlights

      • We assessed the biomechanical performance of a hip fracture preventive device.
      • The device increases both load and energy to fracture of the proximal femur.
      • The performance is maintained after 30 load cycles during multiple fall simulation.
      • None atypic fracture was observed during the mechanical tests.

      Abstract

      Background

      Among the millions of people suffering from a hip fracture each year, 20% may sustain a contralateral hip fracture within 5 years with an associated mortality risk increase reaching 64% in the 5 following years. In this context, we performed a biomechanical study to assess the performance of a hip fracture preventing implant.

      Methods

      The implant consists of two interlocking peek rods unified with surgical cement. Numerical and biomechanical tests were performed to simulate single stance load or lateral fall. Seven pairs of femurs were selected from elderly subjects suffering from osteoporosis or osteopenia, and tested ex-vivo after implantation of the device on one side.

      Findings

      The best position for the implant was identified by numerical simulations. The loadings until failure showed that the insertion of the implant increased significantly (P < 0.05) both fracture load (+18%) and energy to fracture (+32%) of the implanted femurs in comparison with the intraindividual controls. The instrumented femur resisted the implementation of the non-instrumented femur fracture load for 30 cycles and kept its performance at the end of the cyclic loading.

      Interpretation

      Implantation of the fracture preventing device improved both fracture load and energy to fracture when compared with intraindividual controls. This is consistent with previous biomechanical side-impact testing on pairs of femur using the same methodology. Implant insertion seems to be relevant to support multiple falls and thus, to prevent a second hip fracture in elderly patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Beckmann J.
        • Ferguson S.J.
        • Gebauer M.
        • Luering C.
        • Gasser B.
        • Heini P.
        Femoroplasty – augmentation of the proximal femur with a composite bone cement – feasibility, biomechanical properties and osteosynthesis potential.
        Med. Eng. Phys. 2007; 29 (Sep): 755-764
        • Beckmann J.
        • Springorum R.
        • Vettorazzi E.
        • Bachmeier S.
        • Lüring C.
        • Tingart M.
        • Püschel K.
        • Stark O.
        • Grifka J.
        • Gehrke T.
        • Amling M.
        • Gebauer M.
        Fracture prevention by femoroplasty — Cement augmentation of the proximal femur.
        J. Orthop. Res. 2011; 29 (Nov): 1753-1758
        • Bergmann G.
        • Deuretzbacher G.
        • Heller M.
        • Graichen F.
        • Rohlmann A.
        • Strauss J.
        • Duda G.N.
        Hip contact forces and gait patterns from routine activities.
        J. Biomech. 2001; 34: 859-871
        • Cooper C.
        • Campion G.
        • Melton III, L.J.
        Hip fractures in the elderly: a world-wide projection.
        Osteoporos. Int. 1992; 2 (Nov): 285-289
        • De Bakker P.M.
        • Manske S.L.
        • Ebacher V.
        • Oxland T.R.
        • Cripton P.A.
        • Guy P.
        During sideways falls proximal femur fractures initiate in the superolateral cortex: Evidence from high-speed video of simulated fractures.
        J. Biomech. 2009; 42 (Aug 25): 1917-1925
        • Eberle S.
        • Wutte C.
        • Bauer C.
        • von Oldenburg G.
        • Panzer S.
        • Augat P.
        Evaluation of risk for secondary fracture after removal of a new femoral neck plate for intracapsular hip fractures.
        J. Orthop. Trauma. 2011; 25: 721-725
        • Grassi L.
        • Schileo E.
        • Taddei F.
        • Zani L.
        • Juszczyk M.
        • Cristofolini L.
        • Viceconti M.
        Accuracy of finite element predictions in sideways load configurations for the proximal human femur.
        J. Biomech. 2011; : 1-6
        • Heini P.F.
        • Franz T.
        • Fankhauser C.
        • Gasser B.
        • Ganz R.
        Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones.
        Clin. Biomech. 2004; 19 (Jun): 506-512
        • Keaveny T.M.
        • Kopperdahl D.L.
        • Melton III, L.J.
        • Hoffmann P.F.
        • Amin S.
        • Riggs B.L.
        • Khosla S.
        Age-dependence of femoral strength in white women and men.
        J. Bone Miner. Res. 2010; 25 (May): 994-1001
        • Kukla C.
        • Pichl W.
        • Prokesch R.
        • Jacyniak W.
        • Heinze G.
        • Gatterer R.
        • Heinz T.
        Femoral neck fracture after removal of the standard gamma interlocking nail: a cadaveric study to determine factors influencing the biomechanical properties of the proximal femur.
        J. Orthop. Traumatol. 2001; 34: 1519-1526
        • Lord S.R.
        • Sherrington C.
        • Menz H.B.
        Falls in older people — risk factors and strategies for prevention.
        Cambridge University Press, 2001
        • Pinilla T.P.
        • Boardman K.C.
        • Bouxsein M.L.
        • Myers E.R.
        • Hayes W.C.
        Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss.
        Calcif. Tissue Int. 1996; 58 (Apr): 231-235
        • Ryg J.
        • Rejnmark L.
        • Overgaard S.
        • Brixen K.
        • Vestergaard P.
        Hip fracture patient at risk of second hip fracture: a nationwide population-based cohort study of 169 145 cases during 1977–2001.
        J. Bone Miner. Res. 2009; 24 (Jul): 1299-1307
        • Schileo E.
        • Taddei F.
        • Cristofolini L.
        • Viceconti M.
        Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
        J. Biomech. 2008; : 356-367
        • Speirs A.D.
        • Heller M.O.
        • Duda G.N.
        • Taylor W.R.
        Physiologically based boundary conditions in finite element modelling.
        J. Biomech. 2007; 40: 2318-2323
        • Sutter E.G.
        • Moars S.C.
        • Belkoff S.M.
        A biomechanical evaluation of femoroplasty under simulated fall conditions.
        J. Orthop. Trauma. 2010; 24 (Feb): 95-99
        • Trabelsi N.
        • Yosibash Z.
        • Wutte C.
        • Augat P.
        • Eberle S.
        Patient-specific finite element analysis of the human femur—a double-blinded biomechanical validation.
        J. Biomech. 2011; 44: 1666-1672
        • Van der Steenhoven T.J.
        • Schaasberg W.
        • de Vries A.C.
        • Valstar E.R.
        • Nelissen R.G.
        Augmentation with silicone stabilizes proximal femur fractures: an in-vitro biomechanical study.
        Clin. Biomech. 2009; 24 (Mar): 286-290
        • Wakao N.
        • Harada A.
        • Matsui Y.
        • Takemura M.
        • Shimokata H.
        • Mizuno M.
        • Ito M.
        • Matsuyama Y.
        • Ishiguro N.
        The effect of impact direction on the fracture load of osteoporotic proximal femurs.
        Med. Eng. Phys. 2009; 31: 1134-1139