Robot-assisted walking with the Lokomat: The influence of different levels of guidance force on thorax and pelvis kinematics


      • Little attention has been devoted to the trunk during robot-assisted walking.
      • Robot-assisted walking is significantly different compared to treadmill walking.
      • When using robot assistance, the thorax is stimulated in a different way.



      Little attention has been devoted to the thorax and pelvis movements during gait. The aim of this study is to compare differences in the thorax and pelvis kinematics during unassisted walking on a treadmill and during walking with robot assistance (Lokomat-system (Hocoma, Volketswil, Switzerland)).


      18 healthy persons walked on a treadmill with and without the Lokomat system at 2 kmph. Three different conditions of guidance force (30%, 60% and 100%) were used during robot-assisted treadmill walking (30% body weight support). The maximal movement amplitudes of the thorax and pelvis were measured (Polhemus Liberty™ (Polhemus, Colchester, Vermont, USA) (240/16)). A repeated measurement ANOVA was conducted.


      Robot-assisted treadmill walking with different levels of guidance force showed significantly smaller maximal movement amplitudes for thorax and pelvis, compared to treadmill walking. Only the antero-posterior tilting of the pelvis was significantly increased during robot-assisted treadmill walking compared to treadmill walking. No significant changes of kinematic parameters were found between the different levels of guidance force.


      With regard to the thorax and pelvis movements, robot-assisted treadmill walking is significantly different compared to treadmill walking. It can be concluded that when using robot assistance, the thorax is stimulated in a different way than during walking without robot assistance, influencing the balance training during gait.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Aaslund M.K.
        • Moe-Nilssen R.
        Treadmill walking with body weight support effect of treadmill, harness and body weight support systems.
        Gait Posture. 2008; 28 (Aug. PubMed PMID: 18343664): 303-308
        • Arpaia G.
        • Bavera P.M.
        • Caputo D.
        • Mendozzi L.
        • Cavarretta R.
        • Agus G.B.
        • et al.
        Risk of deep venous thrombosis (DVT) in bedridden or wheelchair-bound multiple sclerosis patients: a prospective study.
        Thromb. Res. 2010; 125 (Apr. PubMed PMID: 19640570): 315-317
        • Beer S.
        • Aschbacher B.
        • Manoglou D.
        • Gamper E.
        • Kool J.
        • Kesselring J.
        Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
        Mult. Scler. 2008; 14 (Mar. PubMed PMID: WOS:000254216600012. English): 231-236
        • Cao J.
        • Xie S.Q.
        • Das R.
        • Zhu G.L.
        Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.
        Med. Eng. Phys. 2014; 36 (Dec. PubMed PMID:25205588): 1555-1566
        • Colombo G.
        • Hostettler P.
        Der lokomat- eine angetriebene Geh-orthose.
        Med. Orth. Technol. 2000; 120: 178-181
        • Colombo G.
        • Joerg M.
        • Schreier R.
        • Dietz V.
        Treadmill training of paraplegic patients using a robotic orthosis.
        J. Rehabil. Res. Dev. 2000; 37 (Nov–Dec. PubMed PMID: 11321005. Epub 2001/04/26. eng): 693-700
        • Colombo G.
        • Wirz M.
        • Dietz V.
        Driven gait orthosis for improvement of locomotor training in paraplegic patients.
        Spinal Cord. 2001; 39: 252-255
        • Dietz V.
        • Nef T.
        • Reymer W.Z.
        Neurorehabilitation Technology.
        Springer, 2012
        • Finch L.
        • Barbeau H.
        • Arsenault B.
        Influence of body weight support on normal human gait: development of a gait retraining strategy.
        Phys. Ther. 1991; 71 (Nov. PubMed PMID: 1946621. discussion 55–6): 842-855
        • Frey M.
        • Colombo G.
        • Vaglio M.
        • Bucher R.
        • Jorg M.
        • Riener R.
        A novel mechatronic body weight support system.
        IEEE Trans. Neural Syst. Rehabil. Eng. 2006; 14 (Sep. PubMed PMID: 17009491): 311-321
        • Hesse S.
        Treadmill training with partial body weight support after stroke: a review.
        NeuroRehabilitation. 2008; 23 (PubMed PMID: 18356589): 55-65
        • Hesse S.
        • Uhlenbrock D.
        A mechanized gait trainer for restoration of gait.
        J. Rehabil. Res. Dev. 2000; 37 (Nov–Dec): 701-708
        • Hidler J.
        • Nichols D.
        • Pelliccio M.
        • Brady K.
        Advances in the understanding and treatment of stroke impairment using robotic devices.
        Top. Stroke Rehabil. 2005; 12 (Spring. PubMed PMID: 15940582): 22-35
        • Hidler J.
        • Wisman W.
        • Neckel N.
        Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
        Clin. Biomech. 2008; 23 (Dec. PubMed PMID: 18849098): 1251-1259
        • Hornby T.G.
        • Zemon D.H.
        • Campbell D.
        Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury.
        Phys. Ther. 2005; 85 (Jan. PubMed PMID: 15623362): 52-66
        • Hornby T.G.
        • Zemon D.H.
        • Campbell D.
        Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury.
        Phys. Ther. 2005; 85: 52-66
        • Hussain S.
        • Xie S.Q.
        • Liu G.Y.
        Robot assisted treadmill training: mechanisms and training strategies.
        Med. Eng. Phys. 2011; 33 (Jun. PubMed PMID: WOS:000291525100001. English): 527-533
        • Inman V.T.
        Human locomotion. 1966.
        Clin. Orthop. Relat. Res. 1993; 288 (Mar. PubMed PMID: 8458148. Epub 1993/03/01. eng): 3-9
        • Jezernik S.
        • Scharer R.
        • Colombo G.
        • Morari M.
        Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals.
        Spinal Cord. 2003; 41 (Dec. PubMed PMID: 14639444. Epub 2003/11/26. eng): 657-666
        • Klarner T.
        • Chan H.K.
        • Wakeling J.M.
        • Lam T.
        Patterns of muscle coordination vary with stride frequency during weight assisted treadmill walking.
        Gait Posture. 2010; 31 (Mar. PubMed PMID: 20097076): 360-365
        • Krewer C.
        • Muller F.
        • Husemann B.
        • Heller S.
        • Quintern J.
        • Koenig E.
        The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects.
        Gait Posture. 2007; 26 (Sep. PubMed PMID: 17113774. Epub 2006/11/23. eng): 372-377
        • Langhorne P.
        • Bernhardt J.
        • Kwakkel G.
        Stroke rehabilitation.
        Lancet. 2011; 377 (May 14. PubMed PMID: 21571152. Epub 2011/05/17. Eng): 1693-1702
        • Lo A.C.
        • Triche E.W.
        Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training.
        Neurorehabil. Neural Repair. 2008; 22 (Nov–Dec. PubMed PMID: WOS:000260873300002. English): 661-671
        • Lo A.C.
        • Chang V.C.
        • Gianfrancesco M.A.
        • Friedman J.H.
        • Patterson T.S.
        • Benedicto D.F.
        Reduction of freezing of gait in Parkinson's disease by repetitive robot-assisted treadmill training: a pilot study.
        J. Neuroeng. Rehabil. 2010; 14 (Oct. PubMed PMID: WOS:000284007900001. English): 7
        • Mayr A.
        • Kofler M.
        • Quirbach E.
        • Matzak H.
        • Frohlich K.
        • Saltuari L.
        Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis.
        Neurorehabil. Neural Repair. 2007; 21 (Jul–Aug. PubMed PMID: WOS:000247314600003. English): 307-314
        • Mehrholz J.
        • Pohl M.
        Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices.
        J. Rehabil. Med. 2012; 44 (Mar. PubMed PMID: 22378603. Epub 2012/03/02. eng): 193-199
        • Mehrholz J.
        • Kugler J.
        • Pohl M.
        Locomotor training for walking after spinal cord injury.
        Cochrane Database Syst. Rev. 2008; 2 (PubMed PMID: 18425962. Epub 2008/04/22.Eng): CD006676
        • Mehrholz J.
        • Friis R.
        • Kugler J.
        • Twork S.
        • Storch A.
        • Pohl M.
        Treadmill training for patients with Parkinson's disease.
        Cochrane Database Syst. Rev. 2010; 1 (PubMed PMID: 20091652. Epub 2010/01/22. eng): CD007830
        • Mehrholz J.
        • Elsner B.
        • Werner C.
        • Kugler J.
        • Pohl M.
        Electromechanical-assisted training for walking after stroke.
        Cochrane Database Syst. Rev. 2013; 7 (PubMed PMID: 23888479): CD006185
        • Mills P.M.
        • Morrison S.
        • Lloyd D.G.
        • Barrett R.S.
        Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion.
        J. Biomech. 2007; 40 (PubMed PMID: 16919639): 1504-1511
        • Neckel N.
        • Wisman W.
        • Hidler J.
        Limb alignment and kinematics inside a Lokomat robotic orthosis.
        Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006; 1 (PubMed PMID: 17946976): 2698-2701
        • Pennycott A.
        • Wyss D.
        • Vallery H.
        • Klamroth-Marganska V.
        • Riener R.
        Towards more effective robotic gait training for stroke rehabilitation: a review.
        J. Neuroeng. Rehabil. 2012; 9 (PubMed PMID: 22953989. Pubmed Central PMCID:3481425. Epub 2012/09/08. eng): 65
        • Pintèr I.
        • Vreugdenhil A.
        • Janssens T.
        • Lamoth C.
        Effect of body weight support and walking speed on inter-segmental coordination during gait.
        Gait Posture. 2006; 24: 207-208
        • Sale P.
        • Franceschini M.
        • Waldner A.
        • Hesse S.
        Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
        Eur. J. Phys. Rehabil. Med. 2012; 48 (Mar. PubMed PMID: 22543557. Epub 2012/05/01. eng): 111-121
        • Saunders J.B.
        • Inman V.T.
        • Eberhart H.D.
        The major determinants in normal and pathological gait.
        J. Bone Joint Surg. Am. 1953; 35-A (Jul. PubMed PMID: 13069544. Epub 1953/07/01. eng): 543-558
        • Schmidt H.
        • Werner C.
        • Bernhardt R.
        • Hesse S.
        • Kruger J.
        Gait rehabilitation machines based on programmable footplates.
        J. Neuroeng. Rehabil. 2007; 4 (PubMed PMID: 17291335. Pubmed Central PMCID:. Epub 2007/02/13. eng): 2
        • Swinnen E.
        • Duerinck S.
        • Baeyens J.P.
        • Meeusen R.
        • Kerckhofs E.
        Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review.
        J. Rehabil. Med. 2010; 42 (Jun. PubMed PMID: 20549155): 520-526
        • Swinnen E.
        • Beckwee D.
        • Pinte D.
        • Meeusen R.
        • Baeyens J.P.
        • Kerckhofs E.
        Treadmill training in multiple sclerosis: can body weight support or robot assistance provide added value? A systematic review.
        Mult. Scler. Int. 2012; 2012 (PubMed PMID: 22701177): 240274
        • Swinnen E.
        • Baeyens J.P.
        • Knaepen K.
        • Michielsen M.
        • Hens G.
        • Clijsen R.
        • et al.
        Walking with Robot Assistance: The Influence of Body Weight Support on the Trunk and Pelvis Kinematics.
        (Disability and Rehabilitation. Assistive Technology)2014
        • Swinnen E.
        • Baeyens J.-P.
        • Hens G.
        • Knaepen K.
        • Beckwee D.
        • Michielsen M.C.
        • Kerckhofs E.
        Body weight support during robot-assisted walking: influence on the trunk and pelvis kinematics.
        NeuroRehabilitation. 2014; (Accepted for publication, Epub ahead of print)
        • Swinnen E.
        • Baeyens J.P.
        • Pintens S.
        • Van Nieuwenhoven J.
        • Ilsbroukx S.
        • Clijsen R.
        • et al.
        Trunk kinematics during walking in persons with multiple sclerosis: the influence of body weight support.
        NeuroRehabilitation. 2014; 34: 731-740
        • Taylor N.F.
        • Evans O.M.
        • Goldie P.A.
        Angular movements of the lumbar spine and pelvis can be reliably measured after 4 minutes of treadmill walking.
        Clin. Biomech. 1996; 11 (Dec. PubMed PMID: 11415664. Epub 1996/12/01. Eng): 484-486
        • Thorstensson A.
        • Nilsson J.
        • Carlson H.
        • Zomlefer M.R.
        Trunk movements in human locomotion.
        Acta Physiol. Scand. 1984; 121 (May. PubMed PMID: 6741583. Epub 1984/05/01. eng): 9-22
        • van der Kooij H.
        • Veneman J.
        • Ekkelenkamp R.
        Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
        Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006; 1: 189-193
        • Veneman J.F.
        • Kruidhof R.
        • Hekman E.E.
        • Ekkelenkamp R.
        • Van Asseldonck E.H.
        • van der Kooij H.
        Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
        IEEE Trans. Neural Syst. Rehabil. Eng. 2007; 15: 379-386
        • Wirz M.
        • Zemon D.H.
        • Rupp R.
        • Scheel A.
        • Colombo G.
        • Dietz V.
        • et al.
        Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial.
        Arch. Phys. Med. Rehabil. 2005; 86: 672-680