Factors influencing initial cup stability in total hip arthroplasty

      Highlights

      • Insertion force and its relation to under-reaming play an important role in THA.
      • For 1 and 2 mm under-reaming the cup maintained a stable fixation during loading.
      • Increase in under-reaming results in higher stresses, especially at the interface.
      • Under-reaming by 2 mm requires an impact force that is 22.5% greater than 1 mm.
      • Micromotion is only reduced by 13% when under-reaming by 2 mm compared to 1 mm.

      Abstract

      Background

      One of the main goals in total hip replacement is to preserve the integrity of the hip kinematics, by well positioning the cup and to make sure its initial stability is congruent and attained. Achieving the latter is not trivial.

      Methods

      A finite element model of the cup–bone interface simulating a realistic insertion and analysis of different scenarios of cup penetration, insertion, under-reaming and loading is investigated to determine certain measurable factors sensitivity to stress–strain outcome. The insertion force during hammering and its relation to the cup penetration during implantation is also investigated with the goal of determining the initial stability of the acetabular cup during total hip arthroplasty. The mathematical model was run in various configurations to simulate 1 and 2 mm of under-reaming at various imposed insertion distances to mimic hammering and insertion of cup insertion into the pelvis. Surface contact and micromotion at the cup–bone interface were evaluated after simulated cup insertion and post-operative loading conditions.

      Findings

      The results suggest a direct correlation between under-reaming and insertion force used to insert the acetabular cup on the micromotion and fixation at the cup–bone interface.

      Interpretation

      While increased under-reaming and insertion force result in an increase amount of stability at the interface, approximately the same percentage of surface contact and micromotion reduction can be achieved with less insertion force. We need to exercise caution to determine the optimal configuration which achieves a good conformity without approaching the yield strength for bone.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alberton G.M.
        • High W.A.
        • Morrey B.F.
        Dislocation after revision total hip arthroplasty: an analysis of risk factors and treatment options.
        J. Bone Joint Surg. Am. 2002; 84-A: 1788-1792
        • Ali Khan M.A.
        • Brakenbury P.H.
        • Reynolds I.S.
        Dislocation following total hip replacement.
        J. Bone Joint Surg. Br. 1981; 63-B (http://www.ncbi.nlm.nih.gov/pubmed/7217144): 214-218
        • Amirouche F.
        • Solitro G.F.
        Challenges in modeling total knee arthroplasty and total hip replacement.
        Procedia IUTAM. 2011; 2: 18-25https://doi.org/10.1016/j.piutam.2011.04.003
        • Barreto S.
        • Folgado J.
        • Fernandes P.R.
        • Monteiro J.
        The influence of the pelvic bone on the computational results of the acetabular component of a total hip prosthesis.
        J. Biomech. Eng. 2010; 132: 054503https://doi.org/10.1115/1.4001031
        • Bergmann G.
        • Deuretzbacher G.
        • Heller M.
        • Graichen F.
        • Rohlmann A.
        • Strauss J.
        • et al.
        Hip contact forces and gait patterns from routine activities.
        J. Biomech. 2001; 34: 859-871https://doi.org/10.1016/S0021-9290(01)00040-9
        • Brodner W.
        • Grübl A.
        • Jankovsky R.
        • Meisinger V.
        • Lehr S.
        • Gottsauner-Wolf F.
        Cup inclination and serum concentration of cobalt and chromium after metal-on-metal total hip arthroplasty.
        J. Arthroplasty. 2004; 19: 66-70https://doi.org/10.1016/j.arth.2004.09.003
        • Callaghan J.J.
        Periprosthetic fractures of the acetabulum during and following total hip arthroplasty.
        Instr. Course Lect. 1998; 47 (http://www.ncbi.nlm.nih.gov/pubmed/9571423): 231-235
        • Callanan M.C.
        • Jarrett B.
        • Bragdon C.R.
        • Zurakowski D.
        • Rubash H.E.
        • Freiberg A.A.
        • et al.
        The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital.
        Clin. Orthop. Relat. Res. 2011; 469: 319-329https://doi.org/10.1007/s11999-010-1487-1
        • Choi D.
        • Park Y.
        • Yoon Y.-S.
        • Masri B.A.
        In vitro measurement of interface micromotion and crack in cemented total hip arthroplasty systems with different surface roughness.
        Clin. Biomech. 2010; 25: 50-55https://doi.org/10.1016/j.clinbiomech.2009.08.008
        • Choi J.K.
        • Geller J.A.
        • Yoon R.S.
        • Wang W.
        • Macaulay W.
        Comparison of total hip and knee arthroplasty cohorts and short-term outcomes from a single-center joint registry.
        J. Arthroplasty. 2012; 27: 837-841https://doi.org/10.1016/j.arth.2012.01.016
        • Curtis M.J.
        • Jinnah R.H.
        • Wilson V.D.
        • Hungerford D.S.
        The initial stability of uncemented acetabular components.
        J. Bone Joint Surg. (Br.). 1992; 74: 372-376
        • D'Lima D.D.
        • Urquhart A.G.
        • Buehler K.O.
        • Walker R.H.
        • Colwell C.W.
        The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head–neck ratios.
        J. Bone Joint Surg. Am. 2000; 82: 315-321
        • DeWal H.
        • Su E.
        • DiCesare P.E.
        Instability following total hip arthroplasty.
        Am. J. Orthop. (Belle Mead. NJ). 2003; 32: 377-382
        • Fritsche A.
        • Zietz C.
        • Teufel S.
        • Kolp W.
        • Tokar I.
        • Mauch C.
        • et al.
        In-vitro and in-vivo investigations of the impaction and pull-out behavior of metal-backed acetabular cups.
        J. Bone Joint Surg. Br. Vol. 2011; 93-B (http://www.bjjprocs.boneandjoint.org.uk/content/93-B/SUPP_IV/406.2.abstract (accessed February 18, 2014)): 406
        • Goldstein W.M.
        • Gleason T.F.
        • Kopplin M.
        • Branson J.J.
        Prevalence of dislocation after total hip arthroplasty through a posterolateral approach with partial capsulotomy and capsulorrhaphy.
        J. Bone Joint Surg. Am. 2001; 83-A: 2-7
        • Haidukewych G.J.
        • Jacofsky D.J.
        • Hanssen A.D.
        • Lewallen D.G.
        Intraoperative fractures of the acetabulum during primary total hip arthroplasty.
        J. Bone Joint Surg. Am. 2006; 88: 1952-1956https://doi.org/10.2106/JBJS.E.00890
        • Hamilton D.
        • et al.
        Comparative outcomes of total hip and knee arthroplasty: a prospective cohort study.
        Postgrad. Med. J. 2012; 88 (http://pmj.bmj.com/cgi/content/long/postgradmedj-2011-130715v1 (accessed August 08, 2014)): 627-631
        • Hsu J.-T.
        • Chang C.-H.
        • Huang H.-L.
        • Zobitz M.E.
        • Chen W.-P.
        • Lai K.-A.
        • et al.
        The number of screws, bone quality, and friction coefficient affect acetabular cup stability.
        Med. Eng. Phys. 2007; 29: 1089-1095https://doi.org/10.1016/j.medengphy.2006.11.005
        • Inacio M.C.S.
        • Ake C.F.
        • Paxton E.W.
        • Khatod M.
        • Wang C.
        • Gross T.P.
        • et al.
        Sex and risk of hip implant failure: assessing total hip arthroplasty outcomes in the United States.
        JAMA Intern. Med. 2013; 173: 435-441https://doi.org/10.1001/jamainternmed.2013.3271
        • Janssen D.
        • Zwartelé R.E.
        • Doets H.C.
        • Verdonschot N.
        Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties.
        Proc. Inst. Mech. Eng. H. 2010; 224: 67-75https://doi.org/10.1243/09544119JEIM645
        • Jolles B.
        Factors predisposing to dislocation after primary total hip arthroplasty.
        J. Arthroplasty. 2002; 17: 282-288https://doi.org/10.1054/arth.2002.30286
        • Jonsson B.
        • Larsson S.E.
        Functional improvement and costs of hip and knee arthroplasty in destructive rheumatoid arthritis.
        Scand. J. Rheumatol. 1991; 20: 351-357https://doi.org/10.3109/03009749109096811
        • Kennedy J.G.
        • Rogers W.B.
        • Soffe K.E.
        • Sullivan R.J.
        • Griffen D.G.
        • Sheehan L.J.
        Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration.
        J. Arthroplasty. 1998; 13: 530-534https://doi.org/10.1016/S0883-5403(98)90052-3
        • Kotwal R.S.
        • Ganapathi M.
        • John A.
        • Maheson M.
        • Jones S.A.
        Outcome of treatment for dislocation after primary total hip replacement.
        J. Bone Joint Surg. (Br.). 2009; 91: 321-326https://doi.org/10.1302/0301-620X.91B3.21274
        • Kremers H.M.
        • Howard J.L.
        • Loechler Y.
        • Schleck C.D.
        • Harmsen W.S.
        • Berry D.J.
        • et al.
        Comparative long-term survivorship of uncemented acetabular components in revision total hip arthroplasty.
        J. Bone Joint Surg. Am. 2012; 94: e82https://doi.org/10.2106/JBJS.K.00549
        • Krenzel B.A.
        • Berend M.E.
        • Malinzak R.A.
        • Faris P.M.
        • Keating E.M.
        • Meding J.B.
        • et al.
        High preoperative range of motion is a significant risk factor for dislocation in primary total hip arthroplasty.
        J. Arthroplasty. 2010; 25: 31-35https://doi.org/10.1016/j.arth.2010.04.007
        • Kurtz S.
        • Ong K.
        • Lau E.
        • Mowat F.
        • Halpern M.
        Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030.
        J. Bone Joint Surg. Am. 2007; 89: 780-785https://doi.org/10.2106/JBJS.F.00222
        • Kurtz S.
        • Ong K.
        • Schmier J.
        • Mowat F.
        • Saleh K.
        • Dybvik E.
        • et al.
        Future clinical and economic impact of revision total hip and knee arthroplasty.
        J. Bone Joint Surg. Am. 2007; 89: 144-151https://doi.org/10.2106/JBJS.G.00587
        • Kwong L.M.
        • O'Connor D.O.
        • Sedlacek R.C.
        • Krushell R.J.
        • Maloney W.J.
        • Harris W.H.
        A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component.
        J. Arthroplasty. 1994; 9: 163-170https://doi.org/10.1016/0883-5403(94)90065-5
        • Liang M.H.
        • Cullen K.E.
        • Larson M.G.
        • Thompson M.S.
        • Schwartz J.A.
        • Fossel A.H.
        • et al.
        Cost-effectiveness of total joint arthroplasty in osteoarthritis.
        Arthritis Rheum. 1986; 29: 937-943
        • Long M.
        • Rack H.J.
        Titanium alloys in total joint replacement—a materials science perspective.
        Biomaterials. 1998; 19: 1621-1639
        • McGuigan F.X.
        • Hozack W.J.
        • Moriarty L.
        • Eng K.
        • Rothman R.H.
        Predicting quality-of-life outcomes following total joint arthroplasty. Limitations of the SF-36 Health Status Questionnaire.
        J. Arthroplasty. 1995; 10: 742-747
        • Mont M.A.
        • Marker D.R.
        • Smith J.M.
        • Ulrich S.D.
        • McGrath M.S.
        Resurfacing is Comparable to Total Hip Arthroplasty at Short-Term Follow-Up.
        2009https://doi.org/10.1007/s11999-008-0465-3
        • Padgett D.E.
        • Warashina H.
        The unstable total hip replacement.
        Clin. Orthop. Relat. Res. 2004; : 72-79https://doi.org/10.1097/01.blo.0000122694.84774.b5
        • Rissanen P.
        • Aro S.
        • Slätis P.
        • Sintonen H.
        • Paavolainen P.
        Health and quality of life before and after hip or knee arthroplasty.
        J. Arthroplasty. 1995; 10: 169-175
        • Ritter M.A.
        • Albohm M.J.
        • Keating E.M.
        • Faris P.M.
        • Meding J.B.
        Comparative outcomes of total joint arthroplasty.
        J. Arthroplasty. 1995; 10: 737-741https://doi.org/10.1016/S0883-5403(05)80068-3
        • Röder C.
        • Bach B.
        • Berry D.J.
        • Eggli S.
        • Langenhahn R.
        • Busato A.
        Obesity, age, sex, diagnosis, and fixation mode differently affect early cup failure in total hip arthroplasty: a matched case–control study of 4420 patients.
        J. Bone Joint Surg. Am. 2010; 92: 1954-1963https://doi.org/10.2106/JBJS.F.01184
        • Rogers M.
        • Blom A.W.
        • Barnett A.
        • Karantana A.
        • Bannister G.C.
        Revision for Recurrent Dislocation of Total Hip Replacement.
        Hip Int. 2009; 19 (http://www.ncbi.nlm.nih.gov/pubmed/19462366 (accessed February 18, 2014)): 109-113
        • Roth A.
        • Winzer T.
        • Sander K.
        • Anders J.O.
        • Venbrocks R.-A.
        Press fit fixation of cementless cups: how much stability do we need indeed?.
        Arch. Orthop. Trauma Surg. 2006; 126: 77-81https://doi.org/10.1007/s00402-005-0001-9
        • Sharkey P.F.
        • Hozack W.J.
        • Callaghan J.J.
        • Kim Y.S.
        • Berry D.J.
        • Hanssen A.D.
        • et al.
        Acetabular fracture associated with cementless acetabular component insertion: a report of 13 cases.
        J. Arthroplasty. 1999; 14: 426-431https://doi.org/10.1016/S0883-5403(99)90097-9
        • Taddei F.
        • Cristofolini L.
        • Martelli S.
        • Gill H.S.
        • Viceconti M.
        Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy.
        J. Biomech. 2006; 39: 2457-2467https://doi.org/10.1016/j.jbiomech.2005.07.018
        • Ulrich S.D.
        • Seyler T.M.
        • Bennett D.
        • Delanois R.E.
        • Saleh K.J.
        • Thongtrangan I.
        • et al.
        Total hip arthroplasties: what are the reasons for revision?.
        Int. Orthop. 2008; 32: 597-604https://doi.org/10.1007/s00264-007-0364-3
        • Van Sikes C.
        • Lai L.P.
        • Schreiber M.
        • Mont M.A.
        • Jinnah R.H.
        • Seyler T.M.
        Instability after total hip arthroplasty: treatment with large femoral heads vs constrained liners.
        J. Arthroplasty. 2008; 23: 59-63https://doi.org/10.1016/j.arth.2008.06.032
        • Wasielewski R.C.
        • Cooperstein L.A.
        • Kruger M.P.
        • Rubash H.E.
        Acetabular anatomy and the transacetabular fixation of screws in total hip arthroplasty.
        J. Bone Joint Surg. Am. 1990; 72: 501-508
        • Wetters N.G.
        • Murray T.G.
        • Moric M.
        • Sporer S.M.
        • Paprosky W.G.
        • Della Valle C.J.
        Risk factors for dislocation after revision total hip arthroplasty.
        Clin. Orthop. Relat. Res. 2013; 471: 410-416https://doi.org/10.1007/s11999-012-2561-7
        • Wiklund I.
        • Romanus B.
        A comparison of quality of life before and after arthroplasty in patients who had arthrosis of the hip joint.
        J. Bone Joint Surg. Am. 1991; 73: 765-769
        • Zivkovic I.
        • Gonzalez M.
        • Amirouche F.
        The effect of under-reaming on the cup/bone interface of a press fit hip replacement.
        J. Biomech. Eng. 2010; 132: 041008https://doi.org/10.1115/1.2913228