Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat



      Although the squat exercise and its variations are commonly prescribed for anterior cruciate ligament rehabilitation, whether trunk position affects these ligament forces and strains during the squat is unclear. Our purpose was to evaluate the effects of trunk position on anterior cruciate ligament forces and strains during a single-leg squat.


      While instrumented for biomechanical analysis, twelve recreationally active subjects performed single-leg squats with minimal and moderate amounts of forward trunk lean. A combination of inverse dynamics, Hill-type muscle modeling, and mathematical computations estimated anterior cruciate ligament forces, strains and quadriceps, hamstrings, and gastrocnemius forces.


      The moderate forward trunk lean condition vs. minimal forward trunk lean condition had lower peak anterior cruciate ligament forces (↓24%), strains (↓16%), and average anterior cruciate ligament forces and strains during knee flexion ranges of motion of 25–55°(descent) and 35–55°(ascent). A moderate vs. minimal forward trunk lean also produced 35% higher hamstring forces throughout the majority of the squat, but lower quadriceps forces only at knee flexion angles greater than 65°.


      Single-leg squats performed with a moderate forward trunk lean (~40°) can minimize anterior cruciate ligament loads. Mechanistically, trunk lean reduced anterior cruciate ligament forces and strains through concomitant modulations in hip flexion angle and biarticular thigh muscle forces. These findings are clinically relevant for anterior cruciate ligament rehabilitation as a common goal is to minimize anterior cruciate ligament forces and strains through enhancing hamstring and quadriceps co-contractions.


      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Abdel-Rahman E.M.
        • Hefzy M.S.
        Three-dimensional dynamic behavior of the human knee joint under impact loading.
        Med. Eng. Phys. 1998; 20: 276-290
        • Anderson F.C.
        • Pandy M.G.
        A dynamic optimization solution for vertical jumping in three dimensions.
        Comput. Methods Biomech. Biomed. Engin. 1999; 2: 201-231
        • Besier T.F.
        • Fredericson M.
        • Gold G.E.
        • Baupre G.S.
        • Delp S.L.
        Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls.
        J. Biomech. 2009; 42: 898-905
        • Beynnon B.D.
        • Fleming B.C.
        • Johnson R.J.
        • Nichols C.E.
        • Renstrom P.A.
        • Pope M.H.
        Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo.
        Am. J. Sports. Med. 1995; 23: 24-34
        • Beynnon B.D.
        • Johnson R.J.
        • Fleming B.C.
        • Stankewich C.J.
        • Renstrom P.A.
        • Nichols C.E.
        The strain behavior of the anterior cruciate ligament during squatting and active flexion–extension.
        Am. J. Sports Med. 1997; 25: 823-829
        • Beynnon B.D.
        • Uh B.S.
        • Johnson R.J.
        • Abate J.A.
        • Nichols C.E.
        • Fleming B.C.
        • et al.
        Rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind comparison of programs administered over 2 different time intervals.
        Am. J. Sports Med. 2005; 33: 347-359
        • Brown C.H.
        • Wilson D.R.
        • Hecker A.T.
        • Ferragamo M.
        Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading.
        Arthroscopy. 2004; 20: 922-935
        • Butler D.L.
        • Noyes F.R.
        • Grood E.S.
        Ligamentous restraints to anterior-posterior drawer in the human knee: a biomechanical study.
        J. Bone Joint Surg. Am. 1980; 62: 259-270
        • Bynum E.B.
        • Barrack R.L.
        • Alexander A.H.
        Open vs closed chain kinetic exercises after anterior cruciate ligament reconstruction.
        Am. J. Sports Med. 1995; 23: 401-406
        • Carhart M.R.
        Biomechanical analysis of compensatory stepping: implications for paraplegics standing via FNS. PhD.
        • Chandrashekar N.
        • Mansouri H.
        • Slauterbeck J.
        • Hashemi J.
        Sex-based differences in the tensile properties of the human anterior cruciate ligament.
        J. Biomech. 2006; 39: 2943-2950
        • Delp S.L.
        • Loan J.P.
        • Hoy M.G.
        • Zajac F.E.
        • Topp E.L.
        • Rosen J.M.
        An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures.
        IEEE Trans. Biomed. Eng. 1990; 37: 757-767
        • DeVita P.
        • Hortobágyi T.
        Functional knee brace alters predicted knee muscle and joint forces in people with ACL reconstruction during walking.
        J. Appl. Biomech. 2001; 17: 297-311
        • Escamilla R.F.
        • Fleisig G.S.
        • Lowry T.M.
        • Barrentine S.W.
        • Andrews J.R.
        A three-dimensional analysis of the squat during varying stance widths.
        Med. Sci. Sports Exerc. 2001; 33: 984-998
        • Escamilla R.F.
        • Fleisig G.S.
        • Zheng N.
        • Lander J.E.
        • Barrentine S.W.
        • Andrews J.R.
        • et al.
        Effects of technique variations on knee biomechanics during the squat and leg press.
        Med. Sci. Sports Exerc. 2001; 33: 1552-1556
        • Escamilla R.F.
        • Zheng N.
        • Imamura R.
        • Macleod T.D.
        • Edwards W.B.
        • Hreljac A.
        • et al.
        Cruciate ligament force during the wall squat and the one-leg squat.
        Med. Sci. Sports Exerc. 2009; 41: 408-417
        • Farrokhi S.
        • Pollard C.D.
        • Souza R.B.
        • Chen Y.J.
        • Reischl S.
        • Powers C.M.
        Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise.
        J. Orthop. Sports Phys. Ther. 2008; 38: 403-409
        • Friederich J.A.
        • Brand R.A.
        Muscle fiber architecture in the human lower limb.
        J. Biomech. 1990; 23: 91-95
        • Fry A.C.
        • Smith C.
        • Schilling B.K.
        Effect of knee position on hip and knee torques during the barbell squat.
        J. Strength Cond. Res. 2003; 17: 629-633
        • Heijne A.
        • Fleming B.C.
        • Renstrom P.A.
        • Peura G.D.
        • Beynnon B.D.
        • Werner S.
        Strain on the anterior cruciate ligament during closed kinetic chain exercises.
        Med. Sci. Sports Exerc. 2004; 36: 935-941
        • Herzog W.
        • Read L.J.
        Lines of action and moment arms of the major force-carrying structures crossing the human knee joint.
        J. Anat. 1993; 182: 213-230
        • Jordan S.S.
        • DeFrate L.E.
        • Nha K.W.
        • Papannagari R.
        • Gill T.J.
        • Li G.
        The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion.
        Am. J. Sports Med. 2007; 35: 547-554
        • Kulas A.
        • Zalewski P.
        • Hortobágyi T.
        • DeVita P.
        Effects of added trunk load and corresponding trunk position adaptations on lower extremity biomechanics during drop-landings.
        J. Biomech. 2008; 41: 180-185
        • Li G.
        • Rudy T.W.
        • Sakane M.
        • Kanamori A.
        • Ma C.B.
        • Woo S.L.Y.
        The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL.
        J. Biomech. 1999; 32: 395-400
        • Li G.
        • DeFrate L.E.
        • Rubash H.E.
        • Gill T.J.
        In vivo kinematics of the ACL during weight-bearing knee flexion.
        J. Orthop. Res. 2005; 23: 340-344
        • Lloyd D.G.
        • Besier T.F.
        An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
        J. Biomech. 2003; 36: 765-776
        • Markolf K.L.
        • Burchfield D.M.
        • Shapiro M.M.
        • Shepard M.F.
        • Finerman G.A.M.
        • Slauterbeck J.L.
        Combined knee loading states that generate high anterior cruciate ligament forces.
        J. Orthop. Res. 1995; 13: 930-935
        • Markolf K.L.
        • Willems M.J.
        • Jackson S.R.
        • Finerman G.A.M.
        In situ calibration of miniature sensors implanted into the anterior cruciate ligament part I: strain measurements.
        J. Orthop. Res. 1998; 16: 455-463
        • McLean S.G.
        • Huang X.
        • Su A.
        • van den Bogert A.J.
        Sagittal plane biomechanics cannot injure the ACL during sidestep cutting.
        Clin. Biomech. 2004; 19: 828-838
        • Mikkelsen C.
        • Werner S.
        • Eriksson E.
        Closed kinetic chain alone compared to open and closed kinetic chain exercises for quadriceps strengthening after anterior cruciate ligament reconstruction with respect to return to sports: a prospective matched follow-up study.
        Knee Surg. Sports Traumatol. Arthrosc. 2000; 8: 337-342
        • Ohkoshi Y.
        • Yasuda K.
        • Kaneda K.
        • Wada T.
        • Yamanaka M.
        Biomechanical analysis of rehabilitation in the standing position.
        Am. J. Sports Med. 1991; 19: 605-611
        • Renstrom P.
        • Arms S.W.
        • Stanwyck T.S.
        • Johnson R.J.
        • Pope M.H.
        Strain within the anterior cruciate ligament during hamstring and quadriceps activity.
        Am. J. Sports Med. 1986; 14: 83-87
        • Salem G.J.
        • Powers C.M.
        Patellofemoral joint kinetics during squatting in collegiate women athletes.
        Clin. Biomech. 2001; 16: 424-430
        • Shelburne K.B.
        • Pandy M.G.
        Determinants of cruciate-ligament loading during rehabilitation exercise.
        Clin. Biomech. 1998; 13: 403-413
        • Shin C.S.
        • Chaudhari A.M.
        • Andriacchi T.P.
        The influence of deceleration forces on ACL strain during single-leg landing: a simulation study.
        J. Biomech. 2007; 40: 1145-1152
        • Staerke C.
        • Mohwald A.
        • Grobel K.H.
        • Bochwitz C.
        • Becker R.
        ACL graft migration under cyclic loading.
        Knee Surg. Sports Traumatol. Arthrosc. 2010; 18: 1065-1070
        • Toutoungi D.E.
        • Lu T.W.
        • Leardini A.
        • Catani F.
        • O'Connor J.J.
        Cruciate ligament forces in the human knee during rehabilitation exercises.
        Clin. Biomech. 2000; 15: 176-187
        • van Eijden T.M.
        • Weijs W.A.
        • Kouwenhoven E.
        • Verburg J.
        Forces acting on the patella during maximal voluntary contraction of the quadriceps femoris muscle at different knee flexion/extension angles.
        Acta Anat. 1987; 129: 310-314
        • Wickiewicz T.L.
        • Roy R.R.
        • Powell P.L.
        • Edgerton V.R.
        Muscle architecture of the human lower limb.
        Clin. Orthop. Relat. Res. 1983; 179: 275-283
        • Winter D.A.
        Biomechanics and Motor Control of Human Movement.
        Wiley-Interscience, New York1990
        • Woo S.L.
        • Hollis J.M.
        • Adams D.J.
        • Lyon R.M.
        • Takai S.
        Tensile properties of the human femur–anterior cruciate ligament–tibia complex. The effects of specimen age and orientation.
        Am. J. Sports Med. 1991; 19: 217-225
        • Yamaguchi G.T.
        • Zajac F.E.
        A planar model of the knee joint to characterize the knee extensor mechanism.
        J. Biomech. 1989; 22: 1-10