Advertisement
Research Article| Volume 25, ISSUE 9, P944-948, November 2010

Ankle range of motion is key to gait efficiency in adolescents with cerebral palsy

  • Laurent Ballaz
    Correspondence
    Corresponding author. 5200, Bélanger Est, Montral (Québec), H1T 1C9.
    Affiliations
    Centre de réadaptation Marie-Enfant (CHU Sainte-Justine), Montréal, Québec, Canada

    Université du Québec à Montréal, Montréal, Québec, Canada
    Search for articles by this author
  • Author Footnotes
    1 École secondaire Joseph Charbonneau, 8200, rue Rousselot, Montral (Québec), H2E 1Z6. Tel.: +1 514 596 4350.
    Suzanne Plamondon
    Footnotes
    1 École secondaire Joseph Charbonneau, 8200, rue Rousselot, Montral (Québec), H2E 1Z6. Tel.: +1 514 596 4350.
    Affiliations
    Centre de réadaptation Marie-Enfant (CHU Sainte-Justine), Montréal, Québec, Canada
    Search for articles by this author
  • Author Footnotes
    2 5200, Bélanger Est, Montral (Québec), H1T 1C9. Tel.: +1 514 374 1710x8184.
    Martin Lemay
    Footnotes
    2 5200, Bélanger Est, Montral (Québec), H1T 1C9. Tel.: +1 514 374 1710x8184.
    Affiliations
    Centre de réadaptation Marie-Enfant (CHU Sainte-Justine), Montréal, Québec, Canada

    Université du Québec à Montréal, Montréal, Québec, Canada
    Search for articles by this author
  • Author Footnotes
    1 École secondaire Joseph Charbonneau, 8200, rue Rousselot, Montral (Québec), H2E 1Z6. Tel.: +1 514 596 4350.
    2 5200, Bélanger Est, Montral (Québec), H1T 1C9. Tel.: +1 514 374 1710x8184.

      Abstract

      Background

      Gait in young people with cerebral palsy is inefficient and there is a lack of relevant indicators for monitoring the problem. In particular, the impact of gait kinematics on gait efficiency is not well documented. The aim of this study is to examine the relationship between gait efficiency, gait kinematics, lower limb muscle strength, and muscular spasticity in adolescents with cerebral palsy.

      Methods

      Ten ambulatory adolescents with spastic cerebral palsy were recruited. The energy expenditure index during gait, gait kinematics, flexion and extension knee isometric muscle strength, and quadriceps spasticity were assessed.

      Findings

      Energy expenditure index (1.5 (0.7) beats/m) was strongly correlated with the ankle and knee flexion/extension ranges of motion (r= −0.82, P<0.01 and r= −0.70, P<0.02, respectively) and also with maximal plantar flexion (r=0.74, P<0.05) during gait. Knee flexion strength was the only strength measurement correlated with energy expenditure index (r= −0.85; P<0.01).

      Interpretation

      This study suggests that ankle and knee flexion/extension ranges of motion during gait are key kinematics factors in gait efficiency in adolescents with cerebral palsy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abel M.F.
        • Damiano D.L.
        Strategies for increasing walking speed in diplegic cerebral palsy.
        J. Pediatr. Orthop. 1996; 16: 753-758
        • Bax M.
        • Goldstein M.
        • Rosenbaum P.
        • Leviton A.
        • Paneth N.
        • Dan B.
        • et al.
        Proposed definition and classification of cerebral palsy, April 2005.
        Dev. Med. Child Neurol. 2005; 47: 571-576
        • Beckung E.
        • Hagberg G.
        • Uldall P.
        • Cans C.
        Probability of walking in children with cerebral palsy in Europe.
        Pediatrics. 2008; 121: e187-e192
        • Berry E.T.
        • Giuliani C.A.
        • Damiano D.L.
        Intrasession and intersession reliability of handheld dynamometry in children with cerebral palsy.
        Pediatr. Phys. Ther. 2004; 16: 191-198
        • Bohannon R.W.
        Test–retest reliability of hand-held dynamometry during a single session of strength assessment.
        Phys. Ther. 1986; 66: 206-209
        • Borghese N.A.
        • Bianchi L.
        • Lacquaniti F.
        Kinematic determinants of human locomotion.
        J. Physiol. 1996; 494: 863-879
        • Brehm M.A.
        • Harlaar J.
        • Schwartz M.
        Effect of ankle–foot orthoses on walking efficiency and gait in children with cerebral palsy.
        J. Rehabil. Med. 2008; 40: 529-534
        • Carda S.
        • Bertoni M.
        • Zerbinati P.
        • Rossini M.
        • Magoni L.
        • Molteni F.
        Gait changes after tendon functional surgery for equinovarus foot in patients with stroke: assessment of temporo-spatial, kinetic, and kinematic parameters in 177 patients.
        Am. J. Phys. Med. Rehabil. 2009; 88: 292-301
        • Damiano D.L.
        • Abel M.F.
        Functional outcomes of strength training in spastic cerebral palsy.
        Arch. Phys. Med. Rehabil. 1998; 79: 119-125
        • Damiano D.L.
        • Abel M.F.
        • Pannunzio M.
        Interrelationships of strength and gait before and after hamstring lengthening.
        Pediatr. Phys. Ther. 2000; 12: 197
        • Domholdt E.
        Rehabilitation Research: Principles and Applications. Elsevier Saunders, St. Louis, Mo2005 (xvi, 576 pp)
        • Eek M.N.
        • Tranberg R.
        • Zugner R.
        • Alkema K.
        • Beckung E.
        Muscle strength training to improve gait function in children with cerebral palsy.
        Dev. Med. Child Neurol. 2008; 50: 759-764
        • Elftman H.
        Biomechanics of muscle with particular application to studies of gait.
        J. Bone Joint Surg. Am. 1966; 48: 363-377
        • Eng J.J.
        • Winter D.A.
        Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model?.
        J. Biomech. 1995; 28: 753-758
        • Engsberg J.R.
        • Ross S.A.
        • Collins D.R.
        Increasing ankle strength to improve gait and function in children with cerebral palsy: a pilot study.
        Pediatr. Phys. Ther. 2006; 18: 266-275
        • Goh H.T.
        • Thompson M.
        • Huang W.B.
        • Schafer S.
        Relationships among measures of knee musculoskeletal impairments, gross motor function, and walking efficiency in children with cerebral palsy.
        Pediatr. Phys. Ther. 2006; 18: 253-261
        • Klejman S.
        • Andrysek J.
        • Dupuis A.
        • Wright V.
        Test–retest reliability of discrete gait parameters in children with cerebral palsy.
        Arch. Phys. Med. Rehabil. 2010; 91: 781-787
        • Kramer J.F.
        • MacPhail H.E.
        Relationships among measures of walking efficiency, gross motor ability and isometric strength in adolescents with cerebral palsy.
        Pediatr. Phys. Ther. 1994; 6: 3-8
        • Maltais D.
        • Bar-Or O.
        • Galea V.
        • Pierrynowski M.
        Use of orthoses lowers the O(2) cost of walking in children with spastic cerebral palsy.
        Med. Sci. Sports Exerc. 2001; 33: 320-325
        • Nene A.V.
        • Jennings S.J.
        Physiological cost index of paraplegic locomotion using the ORLAU ParaWalker.
        Paraplegia. 1992; 30: 246-252
        • Nordmark E.
        • Anderson G.
        Wartenberg pendulum test: objective quantification of muscle tone in children with spastic diplegia undergoing selective dorsal rhizotomy.
        Dev. Med. Child Neurol. 2002; 44: 26-33
        • Norman J.F.
        • Bossman S.
        • Gardner P.
        • Moen C.
        Comparison of the energy expenditure index and oxygen consumption index during self-paced walking in children with spastic diplegia cerebral palsy and children without physical disabilities.
        Pediatr. Phys. Ther. 2004; 16: 206-211
        • Raja K.
        • Joseph B.
        • Benjamin S.
        • Minocha V.
        • Rana B.
        Physiological cost index in cerebral palsy: its role in evaluating the efficiency of ambulation.
        J. Pediatr. Orthop. 2007; 27: 130-136
        • Rimmer J.H.
        Physical fitness levels of persons with cerebral palsy.
        Dev. Med. Child Neurol. 2001; 43: 208-212
        • Rose J.
        • Gamble J.G.
        • Burgos A.
        • Medeiros J.
        • Haskell W.L.
        Energy expenditure index of walking for normal children and for children with cerebral palsy.
        Dev. Med. Child Neurol. 1990; 32: 333-340
        • Rosen M.G.
        • Dickinson J.C.
        The incidence of cerebral palsy.
        Am. J. Obstet. Gynecol. 1992; 167: 417-423
        • Rosen S.
        • Tucker C.A.
        • Lee S.C.
        Gait energy efficiency in children with cerebral palsy.
        Conf. Proc. IEEE. Eng. Med. Biol. Soc. 2006; 1: 1220-1223
        • Rosenbaum P.L.
        • Palisano R.J.
        • Bartlett D.J.
        • Galuppi B.E.
        • Russell D.J.
        Development of the Gross Motor Function Classification System for cerebral palsy.
        Dev. Med. Child Neurol. 2008; 50: 249-253
        • Ross S.A.
        • Engsberg J.R.
        Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy.
        Arch. Phys. Med. Rehabil. 2007; 88: 1114-1120
        • Schwartz M.H.
        • Rozumalski A.
        • Trost J.P.
        The effect of walking speed on the gait of typically developing children.
        J. Biomech. 2008; 41: 1639-1650
        • Sutherland D.H.
        • Davids J.R.
        Common gait abnormalities of the knee in cerebral palsy.
        Clin. Orthop. Relat. Res. 1993; : 139-147
        • Taylor N.F.
        • Dodd K.J.
        • Graham H.K.
        Test–retest reliability of hand-held dynamometric strength testing in young people with cerebral palsy.
        Arch. Phys. Med. Rehabil. 2004; 85: 77-80
        • Thomas S.S.
        • Buckon C.E.
        • Piatt J.H.
        • Aiona M.D.
        • Sussman M.D.
        A 2-year follow-up of outcomes following orthopedic surgery or selective dorsal rhizotomy in children witSh spastic diplegia.
        J. Pediatr. Orthop. B. 2004; 13: 358-366
        • Thomas S.S.
        • Buckon C.E.
        • Schwartz M.H.
        • Russman B.S.
        • Sussman M.D.
        • Aiona M.D.
        Variability and minimum detectable change for walking energy efficiency variables in children with cerebral palsy.
        Dev. Med. Child Neurol. 2009; 51: 615-621
        • Waters R.L.
        • Lunsford B.R.
        • Perry J.
        • Byrd R.
        Energy–speed relationship of walking: standard tables.
        J. Orthop. Res. 1988; 6: 215-222
        • White H.
        • Uhl T.L.
        • Augsburger S.
        • Tylkowski C.
        Reliability of the three-dimensional pendulum test for able-bodied children and children diagnosed with cerebral palsy.
        Gait Posture. 2007; 26: 97-105
        • Wiart L.
        • Darrah J.
        Test–retest reliability of the energy expenditure index in adolescents with cerebral palsy.
        Dev. Med. Child Neurol. 1999; 41: 716-718
        • Winter D.A.
        Biomechanical motor patterns in normal walking.
        J. Mot Behav. 1983; 15: 302-330
        • Wren T.A.
        • Rethlefsen S.
        • Kay R.M.
        Prevalence of specific gait abnormalities in children with cerebral palsy: influence of cerebral palsy subtype, age, and previous surgery.
        J. Pediatr. Orthop. 2005; 25: 79-83
        • Zarrugh M.Y.
        • Radcliffe C.W.
        Predicting metabolic cost of level walking.
        Eur J. Appl. Physiol. Occup. Physiol. 1978; 38: 215-223