Advertisement

Surface EMG based muscle fatigue evaluation in biomechanics

      Abstract

      In the last three decades it has become quite common to evaluate local muscle fatigue by means of surface electromyographic (sEMG) signal processing. A large number of studies have been performed yielding signal-based quantitative criteria of fatigue in primarily static but also in dynamic tasks. The non-invasive nature of this approach has been particularly appealing in areas like ergonomics and occupational biomechanics, to name just the most prominent ones. However, a correct appreciation of the findings concerned can only be obtained by judging both the scientific value and practical utility of methods while appreciating the corresponding advantages and limitations. The aim of this paper is to serve as a state of the art summary of this issue. The paper gives an overview of classical and modern signal processing methods and techniques from the standpoint of applicability to sEMG signals in fatigue-inducing situations relevant to the broad field of biomechanics. Time domain, frequency domain, time–frequency and time-scale representations, and other methods such as fractal analysis and recurrence quantification analysis are described succinctly and are illustrated with their biomechanical applications, research or clinical alike. Examples from the authors’ own work are incorporated where appropriate. The future of this methodology is projected by estimating those methods that have the greatest chance to be routinely used as reliable muscle fatigue measures.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akaike H.
        A new look at the statistical model identification.
        IEEE Trans. Automat. Contr. 1974; 19: 716-723
        • Akay M.
        Time Frequency and Wavelets in Biomedical Signal Processing.
        IEEE Press, Piscataway, NJ1998
        • Allison G.T.
        • Fujiwara T.
        The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity.
        Clin. Biomech. 2002; 17: 464-469
        • Basano L.
        • Ottonello P.
        Real-time FFT to monitor muscle fatigue.
        IEEE Trans. Biomed. Eng. 1986; 33: 1049-1051
        • Basmajian J.V.
        • De Luca C.J.
        Muscles Alive: Their Function Revealed by Electromyography.
        fifth ed. Williams and Wilkins, Baltimore1985
        • Bonato P.
        • D’Alessio T.
        • Knaflitz M.
        A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait.
        IEEE Trans. Biomed. Eng. 1998; 45: 287-299
        • Bonato P.
        • Gagliati G.
        • Knaflitz M.
        Analysis of myoelectric signals recorded during dynamic contractions – a time–frequency approach to assessing muscle fatigue.
        IEEE Eng. Med. Biol. Mag. 1996; 15: 102-111
        • Brody L.R.
        • Pollock M.T.
        • Roy S.H.
        • De Luca C.J.
        • Celli B.
        pH-induced effects on median frequency and conduction velocity of the myoelectric signal.
        J. Appl. Physiol. 1991; 71: 1878-1885
        • Chaffin D.B.
        Localized muscle fatigue-definition and measurement.
        J. Occup. Med. 1973; 15: 346-354
      1. Cifrek, M., 1997. Myoelectric Signal Analysis during Dynamic Fatigue. Ph.D. Dissertation. University of Zagreb, Faculty of Electrical Engineering and Computing (in Croatian).

      2. Cifrek, M., Tonkovic, S., Medved, V., 1999. Surface EMG spectrogram in dynamic muscle fatigue monitoring – influence of analysis parameters. In: Hinrikus, H. et al., (Eds.), 11th Nordic-Baltic Conference on Biomedical Engineering, Tallin, Estonia, pp. 375–376.

      3. Cifrek, M., Tonkovic, S., Medved, V., 1998. Surface myoelectric signal spectral analysis during fatigued dynamic contractions of quadriceps muscle. In: Magjarevic, R. (Ed.), 8th International IMEKO Conference on Measurement in Clinical Medicine, KoREMA, Zagreb, pp. 98–101.

        • Cifrek M.
        • Tonkovic S.
        • Medved V.
        Measurement and analysis of surface myoelectric signals during fatigued cyclic dynamic contractions.
        Measurement. 2000; 27: 85-92
        • Clancy E.A.
        Electromyogram amplitude estimation with adaptive smoothing window length.
        IEEE Trans. Biomed. Eng. 1999; 46: 717-729
        • Clancy E.A.
        • Farina D.
        • Filligoi G.
        Single-channel techniques for information extraction from the surface EMG signal.
        in: Merletti R. Parker P.A. Electromyography – Physiology, Engineering, and Noninvasive Applications. first ed. John Wiley & Sons, Inc., Hoboken, New Jersey2004: 133-168
        • Clancy E.A.
        • Farina D.
        • Merletti R.
        Cross-comparison of time- and frequency-domain methods for monitoring the myoelectric signal during a cyclic, force-varying, fatiguing hand-grip task.
        J. Electromyogr. Kines. 2005; 15: 256-265
        • Clancy E.A.
        • Morin E.L.
        • Merletti R.
        Sampling, noise-reduction and amplitude estimation issues in surface electromyography.
        J. Electromyogr. Kines. 2002; 12: 1-16
        • Cobb S.
        • Forbes A.
        Electromyographic studies of muscular fatigue in man.
        Am. J. Physiol. 1923; 65: 234-251
        • Cohen L.
        Time–Frequency Analysis.
        Prentice-Hall, Englewood Cliffs, NJ1995
        • Cooley J.W.
        • Tukey J.W.
        An algorithm for machine calculation of complex Fourier series.
        Mathematics of Computation. 1965; 19: 297
        • D’Alessio T.
        • Knaflitz M.
        • Balestra G.
        • Paggi S.
        Online estimation of myoelectric signal spectral parameters and nonstationarities detection.
        IEEE Trans. Biomed. Eng. 1993; 40: 981-985
        • De Luca C.J.
        Physiology and mathematics of myoelectric signals.
        IEEE Trans. Biomed. Eng. 1979; 26: 313-325
        • De Luca C.J.
        Myoelectrical manifestations of localized muscular fatigue in humans.
        Crit. Rev. Biomed. Eng. 1984; 11: 251-279
        • De Luca C.J.
        Spectral compression of the EMG signal as an index of muscle fatigue.
        in: Sargeant A.J. Kernell D. Neuromuscular Fatigue. Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands1992: 44-51
        • Dimitrova N.A.
        • Dimitrov G.V.
        Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies.
        J. Electromyogr. Kines. 2003; 13: 13-36
        • Dolan P.
        • Mannion A.F.
        • Adams M.A.
        Fatigue of the erector spinae muscles – a quantitative assessment using frequency banding of the surface electromyography signal.
        Spine. 1995; 20: 149-159
        • Echeverria J.C.
        • Crowe J.A.
        • Woolfson M.S.
        • Hayes-Gill B.R.
        Application of empirical mode decomposition to heart rate variability analysis.
        Med. Biol. Eng. Comput. 2001; 39: 471-479
        • Edwards R.H.T.
        Human muscle function and fatigue.
        in: Porter R. Whelan J. Human Muscle Fatigue: Physiological Mechanisms. Pitman Medical, London1981
        • Enoka R.M.
        Mechanisms of muscle fatigue – central factors and task dependency.
        J. Electromyogr. Kines. 1995; 5: 141-149
        • Enoka R.M.
        • Duchateau J.
        Muscle fatigue: what, why and how it influences muscle function.
        Journal of Physiology – London. 2008; 586: 11-23
        • Evans H.B.
        • Pan Z.
        • Parker P.A.
        • Scott R.N.
        Signal processing for proportional myoelectric control.
        IEEE Trans. Biomed. Eng. 1984; 31: 207-211
        • Farina D.
        • Fattorini L.
        • Felici F.
        • Filligoi G.
        Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization.
        J. Appl. Physiol. 2002; 93: 1753-1763
        • Farina D.
        • Fosci M.
        • Merletti R.
        Motor unit recruitment strategies investigated by surface EMG variables.
        J. Appl. Physiol. 2002; 92: 235-247
        • Farina D.
        • Merletti R.
        • Disselhorst-Klug C.
        Multi-channel techniques for information extraction from the surface EMG.
        in: Merletti R. Parker P. Electromyography – Physiology, Engineering, and Noninvasive Applications. first ed. John Wiley & Sons, Inc., Hogoken, New Jersey2004: 169-203
        • Farina D.
        • Merletti R.
        • Indino B.
        • Nazzaro M.
        • Pozzo M.
        Surface EMG crosstalk between knee extensor muscles: experimental and model results.
        Muscle Nerve. 2002; 26: 681-695
        • Farina D.
        • Merletti R.
        • Nazzaro M.
        • Caruso I.
        Effect of joint angle on EMG variables in leg and thigh muscles.
        IEEE Eng. Med. Biol. Mag. 2001; 20: 62-71
        • Felici F.
        • Rosponi A.
        • Sbriccoli P.
        • Filligoi G.C.
        • Fattorini L.
        • Marchetti M.
        Linear and non-linear analysis of surface electromyograms in weightlifters.
        Eur. J. Appl. Physiol. 2001; 84: 337-342
        • Filligoi G.
        • Felici F.
        Detection of hidden rhythms in surface EMG signals with a non-linear time-series tool.
        Med. Eng. Phys. 1999; 21: 439-448
        • Gabriel D.A.
        Reliability of SEMG spike parameters during concentric contractions.
        Electromyogr. Clin. Neurophysiol. 2000; 40: 423-430
        • Gao H.Y.
        Choice of thresholds for wavelet shrinkage estimate of the spectrum.
        J. Time Series Anal. 1997; 18: 231-251
        • Gilmore L.D.
        • DeLuca C.J.
        Muscle fatigue monitor (MFM) – 2nd generation.
        IEEE Trans. Biomed. Eng. 1985; 32: 75-78
        • Hägg G.
        Electro-myographic fatigue analysis based on the number of zero crossings.
        Pflugers Archiv – Eur. J. Physiol. 1981; 391: 78-80
        • Hägg G.M.
        Comparison of different estimators of electromyographic spectral shifts during work when applied on short test contractions.
        Med. Biol. Eng. Comput. 1991; 29: 511-516
        • Hägg G.M.
        • Luttmann A.
        • Jager M.
        Methodologies for evaluating electromyographic field data in ergonomics.
        J. Electromyogr. Kines. 2000; 10: 301-312
      4. Heimer, S., 1987. Fatigue. In: Medved, R., (Ed.), Sports Medicine, second ed. pp. 147–151 (in Croatian).

      5. Hermens, H.J., Freriks, B., Merletti, R., Rau, G., Disselhorst-Klug, C., Stegeman, D.F., Hägg, G.M., 1999. European Recommendations for Surface Electromyography: Results of the SENIAM Project. Roessingh Research and Development, Enschede, Netherlands.

        • Hlawatsch F.
        • Boudreaux-Bartels G.F.
        Linear and quadratic time–frequency signal representations.
        IEEE Signal Proc. Mag. 1992; 9: 21-67
        • Huang N.E.
        • Shen Z.
        • Long S.R.
        • Wu M.L.C.
        • Shih H.H.
        • Zheng Q.N.
        • Yen N.C.
        • Tung C.C.
        • Liu H.H.
        The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.
        Proc. Roy. Soc. London Ser. A – Math. Phys. Eng. Sci. 1998; 454: 903-995
        • Huang W.
        • Shen Z.
        • Huang N.E.
        • Fung Y.C.
        Engineering analysis of biological variables: an example of blood pressure over 1 day.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 4816-4821
        • Humphreys P.W.
        • Lind A.R.
        The blood flow through active and inactive muscles of the forearm during sustained hand-grip contractions.
        J. Physiol. 1963; 166: 120-135
        • IEEE EMB
        Monitoring muscles in motion – advancements in analyzing dynamic EMG data.
        IEEE Eng. Med. Biol. Mag. 2001; 20
        • Inbar G.F.
        • Allin J.
        • Paiss O.
        • Kranz H.
        Monitoring surface EMG spectral changes by the zero crossing rate.
        Med. Biol. Eng. Comput. 1986; 24: 10-18
        • Inman V.T.
        • Ralston H.J.
        • Saunders J.B.
        • Feinstein B.
        • Wright Jr., E.W.
        Relation of human electromyogram to muscular tension.
        Electroencephalogr. Clin. Neurophysiol. 1952; 4: 187-194
        • Jones D.L.
        • Parks T.W.
        A resolution comparison of several time–frequency representations.
        IEEE Trans. Signal Proc. 1992; 40: 413-420
        • Jonkers I.
        • Nuyens G.
        • Seghers J.
        • Nuttin M.
        • Spaepen A.
        Muscular effort in multiple sclerosis patients during powered wheelchair manoeuvres.
        Clin. Biomech. 2004; 19: 929-938
        • Karlsson J.S.
        • Gerdle B.
        • Akay M.
        Analyzing surface myoelectric signals recorded during isokinetic contractions.
        IEEE Eng. Med. Biol. Mag. 2001; 20: 97-105
        • Karlsson S.
        • Yu J.
        • Akay M.
        Time–frequency analysis of myoelectric signals during dynamic contractions: a comparative study.
        IEEE Trans. Biomed. Eng. 2000; 47: 228-238
        • Knaflitz M.
        • Bonato P.
        Time–frequency methods applied to muscle fatigue assessment during dynamic contractions.
        J. Electromyogr. Kines. 1999; 9: 337-350
        • Knowlton G.C.
        • Bennett R.L.
        • McClure R.
        Electromyography of fatigue.
        Arch. Phys. Med. Rehab. 1951; 32: 648-652
        • Kogi K.
        • Hakamada T.
        Frequency analysis of the surface electromyogram in muscle fatigue.
        J. Sci. Labour (Tokyo). 1962; 38: 519-528
      6. Korosec, D. 1999. Continuous time-varying autoregressive spectrum for assessment of fatigue induced changes in SEMG signals. In: [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, Proceedings of the First Joint, p. 574.

        • Kramer C.G.S.
        • Hagg T.
        • Kemp B.
        Real-time measurement of muscle fatigue related changes in surface EMG.
        Med. Biol. Eng. Comput. 1987; 25: 627-630
        • Kwatny E.
        • Thomas D.H.
        • Kwatny H.G.
        An application of signal processing techniques to the study of myoelectric signals.
        IEEE Trans. Biomed. Eng. 1970; 17: 303-313
        • Lindström L.
        • Magnusson R.
        • Petersen I.
        Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals.
        Electromyography. 1970; 10: 341-356
        • Lowery M.M.
        • Vaughan C.L.
        • Nolan P.J.
        • O’Malley M.J.
        Spectral compression of the electromyographic signal due to decreasing muscle fiber conduction velocity.
        IEEE Trans. Rehab. Eng. 2000; 8: 353-361
        • Luttmann A.
        • Jager M.
        • Laurig W.
        Electromyographical indication of muscular fatigue in occupational field studies.
        Int. J. Indus. Ergon. 2000; 25: 645-660
        • MacIsaac D.T.
        • Parker P.A.
        • Scott R.N.
        • Englehart K.B.
        • Duffley C.
        Influences of dynamic factors on myoelectric parameters.
        IEEE Eng. Med. Biol. Mag. 2001; 20: 82-89
        • Maisetti O.
        • Guevel A.
        • Legros P.
        • Hogrel J.Y.
        Prediction of endurance capacity of quadriceps muscles in humans using surface electromyogram spectrum analysis during submaximal voluntary isometric contractions.
        Eur. J. Appl. Physiol. 2002; 87: 509-519
        • Medved V.
        Computer algorithm for an EMG-based muscular fatigue assessment method.
        in: Wilson J.R. Corlett E.N. Manenica I. New Methods in Applied Ergonomics. The Proceedings of the Second International Occupational Ergonomics Symposium. Taylor and Francis, London1987: 71-75
        • Medved V.
        Measurement of Human Locomotion.
        CRC Press, Boca Raton, Fl2001
        • Merletti R.
        • Biey D.
        • Biey M.
        • Prato G.
        • Orusa A.
        Online monitoring of the median frequency of the surface EMG power spectrum.
        IEEE Trans. Biomed. Eng. 1985; 32: 1-7
        • Merletti R.
        • Farina D.
        • Gazzoni M.
        The linear electrode array: a useful tool with many applications.
        J. Electromyogr. Kines. 2003; 13: 37-47
        • Merletti R.
        • Gulisashvili A.
        • Lo Conte L.R.
        Estimation of shape characteristics of surface muscle signal spectra from time domain data.
        IEEE Trans. Biomed. Eng. 1995; 42: 769-776
        • Merletti R.
        • Knaflitz M.
        • De Luca C.J.
        Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions.
        J. Appl. Physiol. 1990; 69: 1810-1820
        • Merletti R.
        • Lo Conte L.R.
        Advances in processing of surface myoelectric signals: part 1.
        Med. Biol. Eng. Comput. 1995; 33 (Spec No): 362-372
        • Merletti R.
        • Lo Conte L.R.
        Surface EMG signal processing during isometric contractions.
        J. Electromyogr. Kines. 1997; 7: 241-250
        • Merletti R.
        • Parker P.
        Electromyography – Physiology, Engineering and Noninvasive Applications.
        first ed. John Wiley & Sons, Inc., Hoboken, New Jersey2004
        • Merletti R.
        • Rainoldi A.
        • Farina D.
        Myoelectric manifestations of muscle fatigue.
        in: Merletti R. Parker P. Electromyography – Physiology, Engineering, and Noninvasive Applications. first ed. John Wiley & Sons, Inc., Hoboken, New Jersey2004: 233-258
        • Merletti R.
        • Sabbahi M.A.
        • DeLuca C.J.
        Median frequency of the myoelectric signal – effects of muscle ischemia and cooling.
        Eur. J. Appl. Physiol. Occup. Physiol. 1984; 52: 258-265
        • Moulin P.
        Wavelet thresholding techniques for power spectrum estimation.
        IEEE Trans. Signal Proc. 1994; 42: 3126-3136
        • Moxham J.
        • Edwards R.H.T.
        • Aubier M.
        • Detroyer A.
        • Farkas G.
        • Macklem P.T.
        • Roussos C.
        Changes in EMG power spectrum (high-to-low ratio) with force fatigue in humans.
        J. Appl. Physiol. 1982; 53: 1094-1099
        • Oppenheim A.V.
        • Shafer R.W.
        Discrete-Time Signal Processing.
        Prentice-Hall, Inc., Englewood Cliffs, New Jersey1989
        • Paiss O.
        • Inbar G.F.
        Autoregressive modeling of surface EMG and its spectrum with application to fatigue.
        IEEE Trans. Biomed. Eng. 1987; 34: 761-770
        • Parzen E.
        Some recent advances in time series modeling.
        IEEE Trans. Automat. Contr. 1974; AC19: 723-730
      7. Peng, B., Jin, X., Min, Y., Su, X., 2006. The study on the sEMG signal characteristics of muscular fatigue based on the Hilbert–Huang transform. In: Computational Science – ICCS 2006, Proceedings, vol. 3991(Pt 1), pp. 140–147.

        • Piper H.
        Elektrophysiologie menschlicher Muskeln.
        Springer Verlag, Berlin1912
        • Pratt A.J.
        • Gander R.E.
        • Brandell B.R.
        Real-time digital median frequency estimator for surface myoelectric signals.
        IEEE Trans. Biomed. Eng. 1991; 38: 306-309
        • Rice R.O.
        Mathematical analysis of random noise.
        in: Wax N. Selected Papers on Noise and Stochastic Processes. Dover, New York1945
        • Rissanen J.
        Modeling by shortest data description.
        Automatica. 1978; 14: 465-471
        • Rissanen J.
        A universal prior for integers and estimation by minimum description length.
        Ann. Stat. 1983; 11: 416-431
        • Roy S.H.
        • De Luca C.J.
        • Casavant D.A.
        Lumbar muscle fatigue and chronic lower back pain.
        Spine. 1989; 14: 992-1001
        • Roy S.H.
        • De Luca C.J.
        • Snyder-Mackler L.
        • Emley M.S.
        • Crenshaw R.L.
        • Lyons J.P.
        Fatigue, recovery, and low back pain in varsity rowers.
        Med. Sci. Sport. Exer. 1990; 22: 463-469
        • Sekulic D.
        • Medved V.
        • Rausavljevic N.
        • Medved V.
        EMG analysis of muscle load during simulation of characteristic postures in dinghy sailing.
        J. Sport. Med. Phys. Fit. 2006; 46: 20-27
        • Seroussi R.
        • Krag M.H.
        • Wilder P.
        • Pope M.H.
        The design and use of a microcomputerized real-time muscle fatigue monitor based on the medial frequency-shift in the electromyographic signal.
        IEEE Trans. Biomed. Eng. 1989; 36: 284-286
        • Stulen F.B.
        • De Luca C.J.
        The relation between the myoelectric signal and physiological properties of constant-force isometric contractions.
        Electroencephalogr. Clin. Neurophysiol. 1978; 45: 681-698
        • Stulen F.B.
        • De Luca C.J.
        Muscle fatigue monitor – a non-invasive device for observing localized muscular fatigue.
        IEEE Trans. Biomed. Eng. 1982; 29: 760-768
        • Stulen F.B.
        • De Luca C.J.
        Frequency parameters of the myoelectric signal as a measure of muscle conduction-velocity.
        IEEE Trans. Biomed. Eng. 1981; 28: 515-523
        • Viitasalo J.H.
        • Komi P.V.
        Signal characteristics of EMG during fatigue.
        Eur. J. Appl. Physiol. Occup. Physiol. 1977; 37: 111-121
        • Vollestad N.K.
        Measurement of human muscle fatigue.
        J. Neurosci. Meth. 1997; 74: 219-227
        • Wang D.M.
        • Wang J.
        • Ge L.Z.
        sEMG time–frequency analysis techniques for evaluation of muscle fatigue and it’s application in ergonomic studies.
        Space Med. Med. Eng. (Beijing). 2003; 16: 387-390
        • Welch P.D.
        Use of fast Fourier transform for estimation of power spectra – a method based on time averaging over short modified periodograms.
        IEEE Trans. Audio. Electroacoust. 1967; AU15: 70-73
        • Xie H.B.
        • Wang Z.Z.
        Mean frequency derived via Hilbert–Huang transform with application to fatigue EMG signal analysis.
        Comput. Meth. Prog. Biol. 2006; 82: 114-120
        • Yassierli
        • Nussbaum M.A.
        Utility of traditional and alternative EMG-based measures of fatigue during low-moderate level isometric efforts.
        J. Electromyogr. Kines. 2008; 18: 44-53