Mechanical properties of the human achilles tendon

  • Tishya A.L Wren
    Correspondence
    Corresponding author
    Affiliations
    Veterans Affairs Health Care System, Rehabilitation Research & Development Center (153), 3801 Miranda Avenue, Palo Alto, CA, USA

    Biomechanical Engineering Division, Mechanical Engineering Department, Stanford University, Stanford, CA, USA
    Search for articles by this author
  • Scott A Yerby
    Affiliations
    Veterans Affairs Health Care System, Rehabilitation Research & Development Center (153), 3801 Miranda Avenue, Palo Alto, CA, USA

    Biomechanical Engineering Division, Mechanical Engineering Department, Stanford University, Stanford, CA, USA
    Search for articles by this author
  • Gary S Beaupré
    Affiliations
    Veterans Affairs Health Care System, Rehabilitation Research & Development Center (153), 3801 Miranda Avenue, Palo Alto, CA, USA

    Biomechanical Engineering Division, Mechanical Engineering Department, Stanford University, Stanford, CA, USA
    Search for articles by this author
  • Dennis R Carter
    Affiliations
    Veterans Affairs Health Care System, Rehabilitation Research & Development Center (153), 3801 Miranda Avenue, Palo Alto, CA, USA

    Biomechanical Engineering Division, Mechanical Engineering Department, Stanford University, Stanford, CA, USA
    Search for articles by this author

      Abstract

      Objective. To determine whether the human Achilles tendon has higher material properties than other tendons and to test for strain rate sensitivity of the tendon.
      Design. Mechanical testing of excised tendons.
      Background. While the human Achilles tendon appears to experience higher in vivo stresses than other tendons, it is not known how the Achilles tendon's material properties compare with the properties of other tendons.
      Methods. Modulus, failure stress, and failure strain were measured for excised human Achilles tendons loaded at strain rates of 1% s −1 and 10% s −1. Paired t-tests were used to examine strain rate effects, and average properties from grouped data were used to compare the Achilles tendon's properties with properties reported in the literature for other tendons.
      Results. Failure stress and failure strain were higher at the faster strain rate, but no significant difference in modulus was observed. At the 1% s −1rate, the mean modulus and failure stress were 816 MPa (SD, 218) and 71 MPa (SD, 17), respectively. The failure strain was 12.8% (SD, 1.7) for the bone-tendon complex and 7.5% (SD, 1.1) for the tendon substance. At the 10% s −1 rate, the mean modulus and failure stress were 822 MPa (SD, 211) and 86 MPa (SD, 24), respectively. The mean failure strain was 16.1% (SD, 3.6) for the bone-tendon complex and 9.9% (SD, 1.9) for the tendon substance. These properties fall within the range of properties reported in the literature for other tendons.
      Conclusions. The material properties of the human Achilles tendon measured in this study are similar to the properties of other tendons reported in the literature despite higher stresses imposed on the Achilles tendon in vivo. Relevance
      The human Achilles tendon does not adapt to high in vivo stresses by developing correspondingly high material properties. This leaves the tendon at an increased risk of injury and may help to explain the high incidence of Achilles tendon injuries.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Könn K
        • Everth J.H
        Morphologie der spontanen Sehnenzerrissung.
        Hefte Unfallheilk. 1967; 91: 255-262
        • Kannus P
        • Józsa L
        Histopathological changes preceding spontaneous rupture of tendon.
        J Bone Joint Surg. 1991; 73A: 1507-1525
        • Józsa L
        • Kannus P
        Overuse injuries of tendons.
        in: Józsa L Kannus P Human tendons. Anatomy, physiology, and pathology. Human Kinetics, Champaign1997: 164-253
        • Leppilahti J
        • Puranen J
        • Orava S
        Incidence of Achilles tendon rupture.
        Acta Orthop Scand. 1996; 67: 277-279
        • Allenmark C
        Partial Achilles tendon tears.
        Clin Sports Med. 1992; 11: 759-769
        • Järvinen M
        Epidemiology of tendon injuries in sports.
        Clin Sports Med. 1992; 11: 493-504
        • Landvater S.U
        • Renström A.F.H
        Complete Achilles tendon ruptures.
        Clin Sports Med. 1992; 11: 741-758
        • Galloway M.T
        • Jokl P
        • Dayton O.W
        Achilles tendon overuse injuries.
        Clin Sports Med. 1992; 11: 771-782
        • Ker R.F
        • Alexander R.M
        • Bennett M.B
        Why are mammalian tendons so thick?.
        J Zool. 1988; 216: 309-324
        • Komi P.V
        • Fukashiro S
        • Järvinen M
        Biomechanical loading of Achilles tendon during normal locomotion.
        Clin Sports Med. 1992; 11: 521-531
        • Ingelmark B.E
        Über den Bau der Sehnen während verschiedener Altersperioden und unter verschiedenen funktionellen Bedingungen. Eine Untersuchung der distalen Sehnen des Musculus biceps brachii und Musculus semitendineus des Menschen sowie der Achillessehnen von Kaninchen und weissen Mäusen.
        Uppsala LäkForen Förhandl. 1945; 50: 357-395
        • Woo S.L.-Y
        • Ritter M.A
        • Amiel D
        • Sanders T.M
        • Gomez M.A
        • Kuei S.C
        • Garfin S.R
        • Akeson W.H
        The biomechanical and biochemical properties of swine tendons – long term effects of exercise on the digital extensors.
        Conn Tis Res. 1980; 7: 177-183
        • Loitz B.J
        • Zernicke R.F
        • Vailas A.C
        • Kody M.H
        • Burstein A.H
        Effects of short-term immobilization versus continuous passive motion in a non-weight-bearing model.
        Clin Orthop. 1989; 244: 265-271
        • Yamamoto N
        • Ohno K
        • Hayashi K
        • Kuriyama H
        • Yasuda K
        • Kaneda K
        Mechanical properties of the rabbit patellar tendon.
        J Biomech Eng. 1993; 115: 23-28
        • Wren T.A.L
        • Beaupré G.S
        • Carter D.R
        Tendon and ligament adaptation to exercise, immobilization, and remobilization.
        J Rehab Res Dev. 2000; 37: 217-224
        • Yamamoto N
        • Hayashi K
        • Kuriyama H
        • Ohno K
        • Yasuda K
        • Kaneda K
        Mechanical properties of the rabbit patellar tendon.
        J Biomech Eng. 1992; 114: 332-337
        • Danto M.I
        • Woo S.L.-Y
        The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates.
        J Orthop Res. 1993; 11: 58-67
        • Johnson G.A
        • Tramaglini D.M
        • Levine R.E
        • Ohno K
        • Choi N
        • Woo S.L.-Y
        Tensile and viscoelastic properties of human patellar tendon.
        J Orthop Res. 1994; 12: 796-803
        • Noyes F.R
        • Butler D.L
        • Grood E.S
        • Zernicke R.F
        • Hefzy M.S
        Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
        J Bone Joint Surg. 1984; 66A: 344-352
        • Butler D.L
        • Kay M.D
        • Stouffer D.C
        Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments.
        J Biomech. 1986; 19: 425-432
        • Haut R.C
        • Lancaster R.L
        • DeCamp C.E
        Mechanical properties of the canine patellar tendon: some correlations with age and the content of collagen.
        J Biomech. 1992; 25: 163-173
        • Nakagawa Y
        • Hayashi K
        • Yamamoto N
        • Nagashima K
        Age-related changes in biomechanical properties of the Achilles tendon in rabbits.
        Eur J Appl Physiol. 1996; 73: 7-10
        • Abrahams M
        Mechanical behaviour of tendon in vitro.
        Med Biol Eng. 1967; 5: 433-443
        • Noyes F.R
        • DeLucas J.L
        • Torvik P.J
        Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates.
        J Bone Joint Surg. 1974; 56A: 236-253
        • Crowninshield R.D
        • Pope M.H
        The strength and failure characteristics of rat medial collateral ligaments.
        J Trauma. 1976; 16: 99-105
        • Haut R.C
        Age-dependent influence of strain rate on the tensile failure of rat-tail tendon.
        J Biomech Eng. 1983; 105: 296-299
        • Woo S.L.-Y
        • Peterson R.H
        • Ohland K.J
        • Sites T.J
        • Danto M.I
        The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study.
        J Orthop Res. 1990; 8: 712-721
        • Hubbard R.P
        • Soutas-Little R.W
        Mechanical properties of human tendon and their age dependence.
        J Biomech Eng. 1984; 106: 144-150
        • Thermann H
        • Frerichs O
        • Biewener A
        • Krettek C
        • Schandelmaier P
        Biomechanische untersuchungen zur menschlichen Achillessehnruptur.
        Unfallchirurg. 1995; 98: 570-575
        • Sharkey N.A
        • Smith T.S
        • Lundmark D.C
        Freeze clamping musculo-tendinous junctions for in vitro simulation of joint mechanics.
        J Biomech. 1995; 28: 631-635
        • Lewis G
        • Shaw K.M
        Tensile properties of human tendon achillis: Effect of donor age and strain rate.
        J Foot Ankle Surg. 1997; 36: 435-445
        • Woo S.L.-Y
        • Gomez M.A
        • Seguchi Y
        • Endo C.M
        • Akeson W.H
        Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation.
        J Orthop Res. 1983; 1: 22-29
        • Woo S.L.-Y
        • Orlando C.A
        • Gomez M.A
        • Frank C.B
        • Akeson W.H
        Tensile properties of the medial collateral ligament as a function of age.
        J Orthop Res. 1986; 4: 133-141
        • Noyes F.R
        • Grood E.S
        The strength of the anterior cruciate ligament in humans and rhesus monkeys. Age-related and species-related changes.
        J Bone Joint Surg. 1976; 58-A: 1074-1082
        • Woo S.L.-Y
        • Orlando C.A
        • Camp J.F
        • Akeson W.H
        Effects of postmortem storage by freezing on ligament tensile behavior.
        J Biomech. 1986; 19: 399-404
        • Smith C.W
        • Young I.S
        • Kearney J.N
        Mechanical properties of tendons: changes with sterilization and preservation.
        J Biomech Eng. 1996; 118: 56-61
        • Woo S.L.-Y
        • Lee T.Q
        • Gomez M.A
        • Sato S
        • Field F.P
        Temperature dependent behavior of the canine medial collateral ligament.
        J Biomech Eng. 1987; 109: 68-71
        • Wang X.T
        • deRuijter M.R
        • Alexander R.M
        • Ker R.F
        The effect of temperature on the tensile stiffness of mammalian tail tendons.
        J Zool Lond. 1991; 223: 491-497
        • Hasberry S
        • Pearcy M.J
        Properties of interspinous ligaments of sheep.
        J Biomed Eng. 1986; 8: 62-66