Advertisement

Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling

  • Narayan Yoganandan
    Correspondence
    Corresponding author
    Affiliations
    Biomedical Engineering, Department of Neurosurgery, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA

    Department of Veterans Affairs Medical Center, Milwaukee, WI, USA
    Search for articles by this author
  • Srirangam Kumaresan
    Affiliations
    Biomedical Engineering, Department of Neurosurgery, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA

    Department of Veterans Affairs Medical Center, Milwaukee, WI, USA
    Search for articles by this author
  • Frank A Pintar
    Affiliations
    Biomedical Engineering, Department of Neurosurgery, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA

    Department of Veterans Affairs Medical Center, Milwaukee, WI, USA
    Search for articles by this author

      Abstract

      Objective. The responses and contributions of the soft tissue structures of the human neck are described with a focus on mathematical modeling. Spinal ligaments, intervertebral discs, zygapophysial joints, and uncovertebral joints of the cervical spine are included. Finite element modeling approaches have been emphasized. Representative data relevant to the development and execution of the model are discussed. A brief description is given on the functional mechanical role of the soft tissue components. Geometrical characteristics such as length and cross-sectional areas, and material properties such as force–displacement and stress–strain responses, are described for all components. Modeling approaches are discussed for each soft tissue structure. The final discussion emphasizes the normal and abnormal (e.g., degenerative joint disease, iatrogenic alteration, trauma) behaviors of the cervical spine with a focus on all these soft tissue responses. A brief description is provided on the modeling of the developmental biomechanics of the pediatric spine with a focus on soft tissues. Relevance
      Experimentally validated models based on accurate geometry, material property, boundary, and loading conditions are useful to delineate the clinical biomechanics of the spine. Both external and internal responses of the various spinal components, a data set not obtainable directly from experiments, can be determined using computational models. Since soft tissues control the complex structural response, an accurate simulation of their anatomic, functional, and biomechanical characteristics is necessary to understand the behavior of the cervical spine under normal and abnormal conditions such as facetectomy, discectomy, laminectomy, and fusion.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wolfla C.E
        Adult and child and neck anatomy.
        in: Yoganandan N Pintar F.A Larson S.J Sances A Frontiers in head and neck trauma: clinical and biomechanical. IOS Press, The Netherlands1998: 18-33
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        Methodology to quantify the uncovertebral joint in the human cervical spine.
        J Musculoskeletal Res. 1997; 1: 1-9
      1. Yoganandan N, Pintar FA, Myklebust JB, Maiman DJ, Sances AJ, Larson SJ. Initiation of injury in cervical spine segments. In: Proceedings of 13th Annual Meeting of Cervical Spine Research Society. Boston, MA, 1985

      2. Yoganandan N, Ray G, Sances Jr A, Pintar FA, Myklebust J, Maiman DJ, Myers T. Assessment of traumatic failure load and microfailure load in an intervertebral disc segment. ASME Adv Bioeng 1985:130–1

        • Yoganandan N
        • Ray G
        • Pintar F.A
        • Myklebust J.B
        • Sances A
        Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint.
        J Biomech. 1989; 22: 135-142
        • Yoganandan N
        • Halliday A
        • Dickman C
        • Benzel E
        Practical anatomy and fundamental biomechanics.
        in: Benzel E Spine surgery: techniques, complication avoidance and management. Churchill Livingstone, New York, NY1999: 93-118
        • White A.A
        • Panjabi M.M
        Clinical biomechanics of the spine. second ed. J.B. Lippincott, Philadelphia, PA1990
        • Maiman D.J
        • Yoganandan N
        Biomechanics of cervical spine trauma.
        in: Black P Clinical neurosurgery. Williams & Wilkins, Baltimore, MD1991: 543-570
        • Hukins D.W.L
        Disc structure and function.
        in: Ghosh P Biology of the intervertebral disc. CRC Press, Boca Raton, FL1988: 1-33
        • Coventry M.B
        • Ghormley R.K
        • Kernohan J.W
        The intervertebral disc: its microscopic anatomy and pathology. Part II: Changes in the intervertebral disc concomitant with age.
        J Bone Jt Surg. 1945; 27: 233-247
        • Cusick J.F
        • Yoganandan N
        • Pintar F.A
        • Myklebust J.B
        • Hussain H
        Biomechanics of cervical spine facetectomy and fixation techniques.
        Spine. 1988; 13: 808-812
        • Wen N
        • Lavaste F
        • Santin J
        • Lassau J
        Three-dimensional biomechanical properties of the human cervical spine in vitro.
        Eur Spine J. 1993; 2: 2-15
        • Moroney S.P
        • Schultz A.B
        • Miller J.A
        • Andersson G.B
        Load-displacement properties of lower cervical spine motion segments.
        J Biomech. 1988; 21: 769-779
        • Shea M
        • Edwards W.T
        • White III A.A
        • Hayes W.C
        Variations of stiffness and strength along the human cervical spine.
        J Biomech. 1991; 24: 95-107
      3. Yoganandan N, Pintar FA, Maiman DJ, Cusick JF, Sances Jr A, Walsh PR. Human head–neck biomechanics under axial tension. Med Eng Phys 1996;18:289–94

        • Cusick J.F
        • Pintar F.A
        • Yoganandan N
        • Reinartz J.M
        Biomechanical alterations induced by multilevel cervical laminectomy.
        Spine. 1995; 20: 2393-2399
      4. Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances Jr A. Biomechanical properties of human lumbar spine ligaments. J Biomech 1992;25:1351–6

      5. Yoganandan N, Pintar FA, Cusick JF, Kleinberger M. Head–neck biomechanics in simulated rear impact. In: Proceedings of the 42nd Association for the Advancement of Automotive Medicine. Charlottesville, VA, 1998. p. 209–31

      6. Yoganandan N, Sances Jr A, Pintar FA. Biomechanical evaluation of the axial compressive responses of the human cadaveric and manikin necks. J Biomech Eng 1989;111:250–5

      7. Yoganandan N, Pintar FA, Cusick JF. Biomechanics of compression–extension injuries to the cervical spine. In: Proceedings of the 41st Association for the Advancement of Automotive Medicine. Orlando, FL; 1997. p. 331–44

      8. Yoganandan N, Sances Jr A, Maiman DJ, Myklebust JB, Pech P, Larson SJ. Experimental spinal injuries with vertical impact. Spine 1986;11:855–60

      9. Nusholtz GS, Huelke DE, Luz P, Alem NM, Montavo F. Cervical spine injury mechanisms. In: Proceedings of 27th Stapp Car Crash Conference. San Diego, CA, 1983. p. 179–98

        • Culver R
        • Bender M
        • Melvin J
        Mechanisms, tolerances, and responses obtained under dynamic superior–inferior head impact. Univ Michigan, Ann Arbor, MI1978: 103
      10. Alem NM, Nusholtz GS, Melvin JW. Head and neck response to axial impacts. In: Proceedings of 28th Stapp Car Crash Conference. Warrendale, PA, 1984. p. 275–88

      11. Ewing C, Thomas D, Sances Jr A, Larson SJ, editors. Impact injury of the head and spine. Springfield, IL: Thomas, 1983

      12. Yoganandan N, Sances Jr A, Pintar FA, Maiman DJ, Reinartz J, Cusick JF, Larson SJ. Injury biomechanics of the human cervical column. Spine 1990;15:1031–9

      13. Maiman DJ, Sances Jr A, Myklebust JB, Larson SJ, Houterman C, Chilbert M, El-Ghatit AZ. Compression injuries of the cervical spine: A biomechanical analysis. Neurosurgery 1983;13:254–60

        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        • Maiman D.J
        Finite element modeling of the lower cervical spine: role of intervertebral disc under axial and eccentric loads.
        Med Eng Phys. 1999; 21: 689-700
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        • Maiman D.J
        • Kuppa S
        Biomechanical study of pediatric human cervical spine: a finite element approach.
        J Biomech Eng. 2000; 122: 60-71
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        • Voo L
        • Cusick J.F
        • Larson S.J
        Finite element modeling of cervical laminectomy with graded facetectomy.
        J Spinal Disord. 1997; 10: 40-47
        • Maurel N
        • Lavaste F
        • Skalli W
        A three-dimensional parameterized finite element model of the lower cervical spine. Study of the influence of the posterior articular facets.
        J Biomech. 1997; 30: 921-931
        • Yoganandan N
        • Kumaresan S
        • Voo L
        • Pintar F.A
        Finite element applications in human cervical spine modeling.
        Spine. 1996; 21: 1824-1834
      14. Yoganandan N, Myklebust JB, Ray G, Sances Jr A. Mathematical and finite element analysis of spinal injuries. CRC Rev Biomed Eng 1987;15:29–93

        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        Finite element analysis of the cervical spine: a material property sensitivity study.
        Clin Biomech. 1999; 14: 41-53
      15. Myklebust JB, Pintar FA, Yoganandan N, Cusick JF, Maiman DJ, Myers T, Sances Jr A. Tensile strength of spinal ligaments. Spine 1988;13:526–31

      16. Yoganandan N, Pintar FA, Butler J, Reinartz J, Sances Jr A, Larson SJ. Dynamic response of human cervical spine ligaments. Spine 1989;14:1102–10

      17. Yoganandan N, Kumaresan S, Pintar FA. Geometrical and mechanical properties of human cervical spine ligaments. J Biomech Eng 2000; in press

        • Menezes A
        • Sonntag V
        Principles of spinal surgery. McGraw-Hill, New York1996
        • Panjabi M.M
        • Oxland T.R
        • Parks E.H
        Quantitative anatomy of cervical ligaments. Part II. Middle and lower cervical spine.
        J Spinal Disord. 1991; 4: 276-285
        • Przybylski G.J
        • Patel P.R
        • Carlin G.J
        • Woo S
        Quantitative anthropometry of the subatlantal cervical longitudinal ligaments.
        Spine. 1998; 23: 893-898
        • Mercer S
        • Bogduk N
        The ligaments and anulus fibrosus of human adult cervical intervertebral discs.
        Spine. 1999; 24: 619-628
        • Rauschning W
        Surface cryoplaning – a technique for clinical anatomical correlations.
        Ups J Med Sci. 1986; 91: 251-255
        • Pech P
        • Bergstrom K
        • Rauschning W
        • Haughton W.M
        Attenuation values, volume changes and artifacts in tissue due to freezing.
        Acta Radiol. 1987; 28: 779-782
      18. Yoganandan N, Pintar FA, Kumaresan S, Elhagediab A. Biomechanical assessment of human cervical spine ligaments. In: Proceedings of the 42nd Stapp Car Crash Conference, 1998. p. 223–36

        • Chazal J
        • Tanguy A
        • Bourges M
        Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction.
        J Biomech. 1985; 18: 167-176
      19. Yoganandan N, Maiman DJ, Pintar FA, Ray G, Myklebust JB, Sances Jr A, Larson SJ. Microtrauma in the lumbar spine: a cause of low back pain. Neurosurgery 1988;23:162–8

        • Pintar F.A
        • Yoganandan N
        • Voo L.M
        Effect of age and loading rate on human cervical spine injury threshold.
        Spine. 1998; 23: 1957-1962
      20. Backaitis SH, editor. Biomechanics of impact injury and injury tolerances of the head-neck complex. Warrendale, PA: Society of Automotive Engineers, PT43, 1993

      21. Cesari D, Ramet M. Pelvic tolerance and protection criteria in side impact. In: Proceedings of the 26th Stapp Car Crash Conference. Warrendale, PA, 1982. p. 145–54

      22. McElhaney J.H Roberts V.L Hilyard J.F Handbook of human tolerance. Japan Automobile Research Institute, Tokyo, Japan1976
        • Huelke D.F
        • Nusholtz G.S
        Cervical spine biomechanics: a review of the literature.
        J Orthop Res. 1986; 4: 232-245
        • Errico T.J
        • Bauer R.D
        • Waugh T
        Spinal trauma. J.B. Lippincott, Philadelphia1991: 656
      23. Clark CR, Ducker TB, Dvorak J, Garfin SR, Herkowitz HN, Levine AM, Pizzutillo PD, Ulrich CG, Zeidman SM. The cervical spine. 3rd ed. Philadelphia, PA: Lippincott-Raven, 1998. p. 1003

      24. Herkowitz HN, Garfin SR, Balderston RA, Eismont FJ, Bell GR, Wiesel SW. The spine. 3rd ed. Saunders, 1992

        • Yoganandan N
        • Pintar F.A
        • Cusick J.F
        • Reinartz J
        • Sances A.J
        • Maiman D.J
        Cervical spine injury mechanism under vertical impact.
        ASME-BED. 1994; 28: 339-340
      25. Yoganandan N, Haffner M, Maiman DJ, Nichols H, Pintar FA, Jentzen J, Weinshel S, Larson SJ, Sances Jr A. Epidemiology and injury biomechanics of motor vehicle related trauma to the human spine. SAE Trans 1990;98:1790–1807

      26. Yoganandan N, Pintar FA, Sances Jr A, Maiman DJ. Strength and motion analysis of the human head–neck complex. J Spinal Disord 1991;4:73–85

        • Yoganandan N
        • Maiman D.J
        • Pintar F.A
        Biomechanics of the cervical spine.
        in: Menezes A Sonntag V Principles of spinal surgery. McGraw-Hill, New York1996: 69-83
        • Chang H
        • Gilbertson L.G
        • Goel V.K
        • Winterbottom J.M
        • Clark C.R
        • Patwardhan A
        Dynamic response of the occipito–atlanto–axial (C0–C1–C2) complex in right axial rotation.
        J Orthopaedic Res. 1992; 10: 446-453
      27. Yoganandan N, Pintar FA, Maltese MM. Biomechanics of abdominal injuries. Crit Rev Bioeng 2000; In press

      28. Yoganandan N, Pintar FA, Sances Jr A, Maiman DJ, Myklebust J, Harris G, Ray G. Biomechanical investigations of the human thoracolumbar spine. SAE Trans 1989;97:676–81

        • Clausen J.D
        • Goel V.K
        • Traynelis V.C
        • Scifert J
        Uncinate processes and Luschka joints influence the biomechanics of the cervical spine: quantification using a finite element model of the C5–C6 segment.
        J Orthop Res. 1997; 15: 342-347
      29. de Jager M, Sauren A, Thunnissen J, Wismans J. A three-dimensional head-neck model: validation for frontal and lateral impacts. In: Proceedings of the 38th Stapp Car Crash Conference. Ft. Lauderdale, FL; 1994. p. 93–109

      30. Nitsche S, Krabbel G, Appel H, Haug E. Validation of a finite-element-model of the human neck. In: Proceedings of the International Conference on the Biomechanics of Impact. Dublin, Ireland, 1996. p. 107–8

      31. Kleinberger M. Application of finite element techniques to the study of cervical spine mechanics. In: Proceedings of the 37th Stapp Car Crash Conference. San Antonio, TX; 1993. p. 261–72

      32. Dauvilliers F, Bendjellal F, Weiss M, Lavaste F, Tarriere C. Development of a finite element model of the neck. In: Proceedings of the 38th Stapp Car Crash Conference. Ft. Lauderdale, FL, 1994. p. 77–91

      33. Yang K, Zhu F, Luan F, Zhao L, Begeman P. Development of a finite element model of the human neck. In: Proceedings of the 42nd Stapp Car Crash Conference. Ft. Lauderdale, FL, 1998. p. 195–205

        • Saito T
        • Yamamuro T
        • Shikata J
        • Oka M
        • Tsutsumi S
        Analysis and prevention of spinal column deformity following cervical laminectomy: pathogenetic analysis of postlaminectomy deformities.
        Spine. 1991; 16: 494-502
      34. Yoganandan N, Voo L, Pintar FA, Kumaresan S, Cusick JF, Sances Jr A. Finite element analysis of the cervical spine. In: Proceedings of Injury Prevention Through Biomechanics. Detroit, MI, 1995. p. 149–55

        • Yoganandan N
        • Kumaresan S
        • Voo L
        • Pintar F.A
        • Larson S.J
        Finite element modeling of the C4-C6 cervical spine unit.
        Med Eng Phy. 1996; 18: 569-574
        • Yoganandan N
        • Kumaresan S
        • Voo L
        • Pintar F.A
        Finite element model of the human lower cervical spine.
        J Biomech Eng. 1997; 119: 87-92
        • Nachemson A
        • Evans J
        Some mechanical properties of the third lumbar inter-laminar ligament ligamentum flavum.
        J Biomech. 1968; 1: 211-217
        • Tkaczuk H
        Tensile properties of human lumbar longitudinal ligaments.
        Acta Orthop Scand. 1968; 115: 1-91
        • Hukins D
        • Kirby M
        • Sikoryn T
        • Aspden R
        • Cox A
        Comparison of structure, mechanical properties and functions of lumbar spinal ligaments.
        Spine. 1990; 15: 787-795
      35. Kumaresan S, Yoganandan N, Pintar FA. Finite element modeling of spinal ligaments. In: Proceedings of the ASME Adv Bioeng, 1999. p. 233–4

      36. Pintar FA, Yoganandan N, Pesigan M, Reinartz JM, Sances Jr A, Cusick JF. Cervical vertebral strain measurements under axial and eccentric loading. J Biomech Eng 1995;117:474–8

        • Matsunaga S
        • Kabayama S
        • Yamamoto T
        • Yone K
        • Sakou T
        • Nakanishi K
        Strain on intervertebral discs after anterior cervical decompression and fusion.
        Spine. 1999; 24: 670-675
        • Penning L
        Differences in anatomy, motion, development and aging of the upper and lower cervical disk segments.
        Clin Biomech. 1988; 3: 37-47
        • Pooni J.S
        • Hukins D.W
        • Harris P.F
        • Hilton R.C
        • Davies K.E
        Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine.
        Surg Radiol Anat. 1986; 8: 175-182
        • Gilad I
        • Nissan M
        A study of vertebra and disc geometric relations of the human cervical and lumbar spine.
        Spine. 1986; 11: 154-157
        • Panjabi M.M
        • Duranceau J
        • Goel V.K
        Cervical human vertebrae quantitative three-dimensional anatomy of the middle and lower regions.
        Spine. 1991; 16: 861-869
        • Nissan M
        • Gilad I
        The cervical and lumbar vertebrae: an anthropometric model.
        Eng Med. 1984; 13: 111-114
      37. Yoganandan N, Pintar FA, Kumaresan S. Unpublished data

      38. Zidel P, Ngai J, Raynor R, Hobbs G, Pugh J. Three-dimensional analysis of cervical spine motion segments by computer videophotogrammetry. In: Proceedings of the 31st Annual ORS. Las Vegas, NV, 1985. p. 330

      39. Pintar FA, Myklebust JB, Yoganandan N, Sances Jr A. Biomechanical properties of the human intervertebral disc in tension. In: Proceedings of the ASME. New York, NY, 1986. p. 38–39

        • Wu H.C
        • Yao R.F
        Mechanical behavior of the human anulus fibrosus.
        J Biomech. 1976; 9: 1-7
      40. Yamada H. In: Evans FG, editor. Strength of biological materials. Baltimore, MD: Williams & Wilkins, 1970. p. 297

        • Goel V.K
        • Clausen J.D
        Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach.
        Spine. 1998; 23: 684-691
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        Posterior complex contribution to the axial compressive and distraction behavior of the cervical spine.
        J Musculoskeletal Res. 1998; 2: 257-265
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        Pediatric neck modeling using finite element analysis.
        Int J Crashworthiness. 1998; 2: 367-377
        • Williams J.L
        • Belytschko T.B
        A three-dimensional model of the human cervical spine for impact simulations.
        J Biomech Eng. 1983; 105: 321-331
        • Nowitzke A
        • Westaway M
        • Bogduk N
        Cervical zygapophysial joints: geometrical parameters and relationship to cervical kinematics.
        Clin Biomech. 1994; 9: 342-347
        • Milne N
        The role of zygapophysial joint orientation and uncinate processes in controlling motion in the cervical spine.
        J Anat. 1991; 178: 189-201
        • Onan O
        • Heggeness M
        • Hipp J
        A motion analysis of the cervical facet joint.
        Spine. 1998; 23: 430-439
        • Tobias D
        • Ziv I
        • Maroudas A
        Human facet cartilage: swelling and some physico-chemical characteristics as a function of age.
        Spine. 1992; 17: 694-700
        • Bogduk N
        • Marsland A
        The cervical zygapophysial joint as a source of neck pain.
        Spine. 1988; 13: 610-617
        • Bogduk N
        Pathoanatomical assessment of whiplash.
        in: Yoganandan N Pintar F Larson S Sances A Frontiers in head and neck trauma: clinical and biomechanical. IOS Press, The Netherlands1998
        • Aprill C
        • Dwyer A
        • Bogduk N
        Cervical zygapophysial joint pain patterns II: a clinical evaluation.
        Spine. 1990; 15: 458-461
        • Bogduk N
        • Aprill C
        The prevalence of cervical zygapophysial joint pain, a first approximation.
        Spine. 1993; 17: 744-747
        • Lord S
        • Bogduk N
        • Barnsley L
        Prevalence of third occipital headache following whiplash.
        Orthop Trans. 1992;
        • Yoganandan N
        • Pintar F.A
        • Kleinberger M
        Whiplash injury – biomechancial experimentation.
        Spine. 1999; 24: 83-85
        • Cusick J.F
        • Yoganandan N
        • Pintar F.A
        • Gardon M
        Cervical spine injuries from high velocity forces: a pathoanatomical and radiological study.
        J Spinal Disord. 1996; 9: 1-7
      41. Yoganandan N, Pintar FA, Cusick JF. Biomechanical analyses of whiplash injuries using experimental model. In: Proceedings of the World Congress Whiplash Associated Disorders. Vancouver, Canada, 1999. p. 325–43

        • Yoganandan N
        • Pintar F.A
        Mechanisms of headache and neck pain in whiplash.
        in: Yoganandan N Pintar F.A Frontiers in whiplash trauma: clinical & biomechanical. IOS Press, The Netherlands2000
        • Ahmed A.M
        • Duncan N.A
        • Burke D.L
        The effect of facet geometry on the axial torque-rotation response of lumbar motion segments.
        Spine. 1988; 15: 391-401
        • Zdeblick T.A
        • Abitbol J.J
        • Kunz D.N
        • McCabe R.P
        • Garfin S
        Cervical stability after sequential capsule resection.
        Spine. 1993; 18: 2005-2008
        • Voo L
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        • Cusick J.F
        Finite element analysis of cervical facetectomy.
        Spine. 1997; 22: 964-969
        • Raynor R.B
        • Moskovich R
        • Zidel P
        • Pugh J
        Alterations in primary and coupled neck motions after facetectomy.
        Neurosurgery. 1987; 21: 681-687
        • Francis C.C
        Variations in the articular facets of the cervical vertebrae.
        Anat Rec. 1955; 122: 589-602
        • Panjabi M.M
        • Oxland T
        • Takata K
        • Goel V.K
        • Duranceau J
        • Krag M
        Articular facets of the human spine: quantitative three dimensional anatomy.
        Spine. 1993; 10: 1298-1310
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        Finite element modeling approaches of human cervical spine facet joint capsule.
        J Biomech. 1998; 31: 371-376
        • Tonetti J
        • Peoch M
        • Merloz P
        • Pasquier B
        • Chirossel J
        Elastic reinforcement and thickness of the joint capsules of the lower cervical spine.
        Surgic Radiol Anat. 1999; 21: 35-39
        • Mercer S
        • Bogduk N
        Intra-articular inclusions of the cervical synovial joints.
        Brit J Rheum. 1993; 32: 705-710
      42. Kempson GE. Mechanical properties of articular cartilage. In: Adult articular cartilage. Kent, England: Pitman, 1979. p. 333–414

      43. Sherk HH, Dunn EJ, Eismont FJ, Fielding JW, Long DM, Ono K, Penning L, Raynor R. The cervical spine, 2nd ed. Philadelphia, PA: Lippincott

        • Hall M.C
        Luschka's joint. Thomas, Springfield, IL1965: 141
        • Boreadis A.G
        • Gershon-Cohen J
        Luschka joints of the cervical spine.
        Radiology. 1956; 66: 181-187
        • Compere E.L
        • Tachdjian M.O
        • Kernahan W.T
        The luschka joints: their anatomy, physiology and pathology.
        Orthopaedics. 1959; 1: 159-168
      44. Penning L. Functional anatomy of joints and discs. In: Sherk HH, Dunn EJ, Eismont FJ, editors. The cervical spine. Philadelphia, PA: Lippincott, 1989. p. 33–56

        • Penning L
        • Wilmink J.T
        Rotation of the cervical spine. A CT study in normal subjects.
        Spine. 1987; 12: 732-738
      45. Kumaresan S, Yoganandan N, Pintar FA, Reichert K. Dynamic analysis of pediatric cervical spine. In: Proceedings of the IEEE BMES/EMBS Joint Conference, 1999. p. 507

        • Zdeblick T.A
        • Zou D
        • Warden K.E
        • McCabe R
        • Kunz D
        • Vanderby R
        Cervical stability after foraminotomy.
        J Bone Jt Surg. 1992; 74A: 22-27
        • Raynor R.B
        • Pugh J
        • Shapiro I
        Cervical facetectomy and its effect on spine strength.
        J Neurosurg. 1985; 63: 278-282
        • Ishida Y
        • Suzuki K
        • Ohmori K
        • Kikata Y
        • Hattori Y
        Critical analysis of extensive cervical laminectomy.
        Neurosurgery. 1989; 24: 215-222
        • Cahill D
        • Bellegarrigue R
        • Ducker T
        Bilateral facet to spinous process fusion: a new technique for posterior spinal fusion after trauma.
        Neurosurgery. 1983; 13: 1-4
        • Maiman D.J
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        Effect of anterior cervical interbody fusion on adjacent segments.
        Biomed Mater Eng. 1999; 9: 27-38
        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        Finite element analysis of anterior cervical spine interbody fusion.
        Biomed Mater Eng. 1997; 7: 221-230
        • Hattori S
        • Oda H
        • Kawai S
        Cervical intradiscal pressure in movements and traction of the cervical spine.
        Z Orthop. 1981; 119: 568
        • Pospiech J
        • Stolke D
        • Wilke H
        • Claes L
        Intradiscal pressure recordings in the cervical spine.
        Neurosurgery. 1999; 44: 379-385
      46. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK. Contribution of disc degeneration to osteophyte formation in cervical spine: biomechanical model. J Orthop Res 2000;Under Review

        • Kumaresan S
        • Yoganandan N
        • Pintar F.A
        Biomechanics of pediatric cervical spine: compression, flexion and extension responses.
        J Crash Prevention Injury Control. 2000; 2: 87-101
      47. Yoganandan N, Kumaresan S, Pintar FA. Pediatric cervical spine biomechanics using finite element models. In: Proceedings of the International Research Council on the Biomechanics of Impact. Goteborg, Sweden, 1998. p. 349–63

      48. Kumaresan S, Yoganandan N, Pintar FA. Age-specific pediatric cervical spine biomechanical responses: Three-dimensional nonlinear finite element models. In: Proceedings of the 41st Stapp Car Crash Conference. Orlando, FL, 1997. p. 31–61