The Clinical Biomechanics Award 2012 — Presented by the European Society of Biomechanics: Large scale simulations of trabecular bone adaptation to loading and treatment

      Abstract

      Background

      Microstructural simulations of bone remodeling are particularly relevant in the clinical management of osteoporosis. Before a model can be applied in the clinics, a validation against controlled in vivo data is crucial. Here we present a strain-adaptive feedback algorithm for the simulation of trabecular bone remodeling in response to loading and pharmaceutical treatment and report on the results of the large-scale validation against in vivo data.

      Methods

      The algorithm follows the mechanostat principle and incorporates mechanical feedback, based on the local strain-energy density. For the validation, simulations of bone remodeling and adaptation in 180 osteopenic mice were performed. Permutations of the conditions for early (20th week) and late (26th week) loading of 8 N or 0 N, and treatments with bisphosphonates, or parathyroid hormone were simulated. Static and dynamic morphometry and local remodeling sites from in vivo and in silico studies were compared.

      Findings

      For each study an individual set of model parameters was selected. Trabecular bone volume fraction was chosen as an indicator of the accuracy of the simulations. Overall errors for this parameter were 0.1–4.5%. Other morphometric indices were simulated with errors of less than 19%. Dynamic morphometry was more difficult to predict, which resulted in significant differences from the experimental data.

      Interpretation

      We validated a new algorithm for the simulation of bone remodeling in trabecular bone. The results indicate that the simulations accurately reflect the effects of treatment and loading seen in respective experimental data, and, following adaptation to human data, could be transferred into clinics.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adachi T.
        • Tsubota K.
        • Tomita Y.
        • Hollister S.J.
        Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models.
        J. Biomech. Eng. 2001; 123: 403-409
        • Arbenz P.
        • van Lenthe G.H.
        • Mennel U.
        • Müller R.
        • Sala M.
        A scalable multi-level preconditioner for matrix-free mu-finite element analysis of human bone structures.
        Int. J. Numer. Methods Eng. 2008; 73: 927-947
        • Bouxsein M.L.
        • Boyd S.K.
        • Christiansen B.A.
        • Guldberg R.E.
        • Jepsen K.J.
        • Muller R.
        Guidelines for assessment of bone microstructure in rodents using micro-computed tomography.
        J. Bone Miner. Res. 2010; 25: 1468-1486
        • Carter D.R.
        Mechanical Loading Histories and Cortical Bone Remodeling.
        Calcif. Tissue Int. 1984; 36: S19-S24
        • Chrischilles E.A.
        • Butler C.D.
        • Davis C.S.
        • Wallace R.B.
        A model of lifetime osteoporosis impact.
        Arch. Intern. Med. 1991; 151: 2026-2032
        • Cooper C.
        • Campion G.
        • Melton III, L.J.
        Hip fractures in the elderly: a world-wide projection.
        Osteoporos. Int. 1992; 2: 285-289
        • Frost H.M.
        Bone's mechanostat: a 2003 update.
        Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003; 275A: 1081-1101
        • Garnero P.
        • Sornay-Rendu E.
        • Chapuy M.C.
        • Delmas P.D.
        Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis.
        J. Bone Miner. Res. 1996; 11: 337-349
        • Gold D.T.
        The clinical impact of vertebral fractures: quality of life in women with osteoporosis.
        Bone. 1996; 18: 185S-189S
        • Hannan M.T.
        • Felson D.T.
        • Dawson-Hughes B.
        • Tucker K.L.
        • Cupples L.A.
        • Wilson P.W.
        • Kiel D.P.
        Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study.
        J. Bone Miner. Res. 2000; 15: 710-720
        • Huiskes R.
        Validation of adaptive bone-remodeling simulation models.
        Stud. Health Technol. Inform. 1997; 40: 33-48
        • Kanis J.A.
        Diagnosis of osteoporosis and assessment of fracture risk.
        Lancet. 2002; 359: 1929-1936
        • Kanis J.A.
        • Burlet N.
        • Cooper C.
        • Delmas P.D.
        • Reginster J.Y.
        • Borgstrom F.
        • Rizzoli R.
        European guidance for the diagnosis and management of osteoporosis in postmenopausal women.
        Osteoporos. Int. 2008; 19: 399-428
        • Kohler T.
        • Stauber M.
        • Donahue L.R.
        • Muller R.
        Automated compartmental analysis for high-throughput skeletal phenotyping in femora of genetic mouse models.
        Bone. 2007; 41: 659-667
        • Kuhn G.
        • Weigt C.
        • Lambers F.M.
        • Müller R.
        A physiome map of mechanical and pharmaceutical treatment in a mouse model of postmenopausal osteoporosis.
        in: Abstracts ASBMR 2011 Annual Meeting. J. Bone Miner. Res., San Diego, USA. 2011: SA0069
        • Lambers F.M.
        • Schulte F.A.
        • Kuhn G.
        • Webster D.J.
        • Müller R.
        Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
        Bone. 2011; 49: 1340-1350
        • Lambers F.M.
        • Kuhn G.
        • Schulte F.A.
        • Koch K.
        • Müller R.
        Longitudinal assessment of in vivo bone dynamics in a mouse tail model of postmenopausal osteoporosis.
        Calcif. Tissue Int. 2012; 90: 108-119
        • Levchuk A.
        • Müller R.
        In vivo validation of predictive models for bone remodeling and mechanobiology.
        in: Holzapfel G. Kuhl E. Computer Models in Biomechanics. Springer Science+Business Media, Dordrecht2013: 383-394
        • Liberman U.A.
        • Weiss S.R.
        • Broll J.
        • Minne H.W.
        • Quan H.
        • Bell N.H.
        • Rodriguez-Portales J.
        • Downs Jr., R.W.
        • Dequeker J.
        • Favus M.
        Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group.
        N. Engl. J. Med. 1995; 333: 1437-1443
        • Lindsay R.
        • Silverman S.L.
        • Cooper C.
        • Hanley D.A.
        • Barton I.
        • Broy S.B.
        • Licata A.
        • Benhamou L.
        • Geusens P.
        • Flowers K.
        • Stracke H.
        • Seeman E.
        Risk of new vertebral fracture in the year following a fracture.
        JAMA. 2001; 285: 320-323
        • Mc Donnell P.
        • Harrison N.
        • Liebschner M.A.K.
        • Mc Hugh P.E.
        Simulation of vertebral trabecular bone loss using voxel finite element analysis.
        J. Biomech. 2009; 42: 2789-2796
        • Melton III, L.J.
        • Chrischilles E.A.
        • Cooper C.
        • Lane A.W.
        • Riggs B.L.
        Perspective. How many women have osteoporosis?.
        J. Bone Miner. Res. 1992; 7: 1005-1010
        • Mullender M.G.
        • Huiskes R.
        • Versleyen H.
        • Buma P.
        Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species.
        J. Orthop. Res. 1996; 14: 972-979
        • Müller R.
        Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling.
        Osteoporos. Int. 2005; 16: S25-S35
        • Neer R.M.
        • Arnaud C.D.
        • Zanchetta J.R.
        • Prince R.
        • Gaich G.A.
        • Reginster J.Y.
        • Hodsman A.B.
        • Eriksen E.F.
        • Ish-Shalom S.
        • Genant H.K.
        • Wang O.
        • Mitlak B.H.
        Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis.
        N. Engl. J. Med. 2001; 344: 1434-1441
        • Nguyen T.V.
        • Center J.R.
        • Eisman J.A.
        Osteoporosis in elderly men and women: effects of dietary calcium, physical activity, and body mass index.
        J. Bone Miner. Res. 2000; 15: 322-331
        • Parfitt A.M.
        Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences.
        Calcif. Tissue Int. 1984; 36: S123-S128
        • Pearson O.M.
        • Lieberman D.E.
        The aging of Wolff's “law”: ontogeny and responses to mechanical loading in cortical bone.
        Am. J. Phys. Anthropol. 2004; : 63-99
        • Ray N.F.
        • Chan J.K.
        • Thamer M.
        • Melton III, L.J.
        Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation.
        J. Bone Miner. Res. 1997; 12: 24-35
        • Riggs B.L.
        • Melton III, L.J.
        The worldwide problem of osteoporosis: insights afforded by epidemiology.
        Bone. 1995; 17: 505S-511S
        • Ruimerman R.
        • Hilbers P.
        • van Rietbergen B.
        • Huiskes R.
        A theoretical framework for strain-related trabecular bone maintenance and adaptation.
        J. Biomech. 2005; 38: 931-941
        • Ruimerman R.
        • Van Rietbergen B.
        • Hilbers P.
        • Huiskes R.
        The effects of trabecular-bone loading variables on the surface signaling potential for bone remodeling and adaptation.
        Ann. Biomed. Eng. 2005; 33: 71-78
        • Schulte F.A.
        • Lambers F.M.
        • Kuhn G.
        • Müller R.
        In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging.
        Bone. 2011; 48: 433-442
        • Schulte F.A.
        • Lambers F.M.
        • Webster D.J.
        • Kuhn G.
        • Müller R.
        In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography.
        Bone. 2011; 49: 1166-1172
        • Schulte F.A.
        • Lambers F.M.
        • Mueller T.L.
        • Stauber M.
        • Muller R.
        Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.
        Comput. Methods Biomech. Biomed. Eng. 2012;
        • Schulte F.A.
        • Zwahlen A.
        • Lambers F.M.
        • Kuhn G.
        • Ruffoni D.
        • Betts D.
        • Webster D.J.
        • Müller R.
        Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data.
        Bone. 2013; 52: 485-492
        • Webster D.J.
        • Morley P.L.
        • van Lenthe G.H.
        • Müller R.
        A novel in vivo mouse model for mechanically stimulated bone adaptation—a combined experimental and computational validation study.
        Comput. Methods Biomech. Biomed. Eng. 2008; 11: 435-441
        • Weigt C.
        Interaction of Mechanical Loading with Osteoporosis Treatment in Ovariectomized Mice, Vetsuisse Faculty.
        Universität Zürich, Zurich2012: 180
        • Woo S.L.
        • Kuei S.C.
        • Amiel D.
        • Gomez M.A.
        • Hayes W.C.
        • White F.C.
        • Akeson W.H.
        The effect of prolonged physical training on the properties of long bone: a study of Wolff's Law.
        J. Bone Joint Surg. Am. 1981; 63: 780-787