Influence of femoral anteversion on proximal femoral loading: measurement and simulation in four patients

      Abstract

      Objective. The aim of this study was to determine the loading of the proximal femur during daily activities and to quantify the influence of femoral anteversion.
      Design. This study combined experimental and analytical approaches to determine the in vivo loading at the hip joint. A numerical musculo–skeletal model was validated against measured in vivo hip contact forces and then used to analyse the influence of anteversion on the loading conditions in the femur.
      Background. Musculo–skeletal loading of long bones is essential for joint replacement and fracture healing. Although joint contact forces have previously been measured in selected patients, the interaction between femoral anteversion and the associated musculo–skeletal loading environment remains unknown.
      Methods. The gait of four patients with force measuring hip prostheses was analysed during walking and stair-climbing. Musculo–skeletal loading was determined using individual numerical models by minimising the sum of the muscle forces.
      Results. Experimentally and numerically determined hip contact forces agreed both qualitatively and quantitatively. Muscle activity resulted in compression of the femur and small shear forces in the meta- and epi-physeal regions. Increasing the anteversion to an angle of 30° increased hip contact forces and bending moments up to 28%.
      Conclusions. This study has shown that femoral anteversion has a strong influence on the musculo–skeletal loading environment in the proximal femur. Relevance
      Detailed musculo–skeletal modelling may allow pre-surgical, patient specific optimisation of loading on implant, bone and soft tissues.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murray M.P.
        • Gore D.R.
        • Brewer B.J.
        • Mollinger L.A.
        • Sepic S.B.
        Joint function after total hip arthroplasty: a four-year follow-up of 72 cases with Charnley and Muller replacements.
        Clin. Orthop. 1981; 157: 119-124
        • Herrlin K.
        • Pettersson H.
        • Selvik G.
        • Lidgren L.
        Femoral anteversion and restricted range of motion in total hip prostheses.
        Acta. Radiol. 1988; 29: 551-553
        • Hodge W.A.
        • Andriacchi T.P.
        • Galante J.O.
        A relationship between stem orientation and function following total hip arthroplasty.
        J. Arthroplasty. 1991; 6: 229-235
        • Cheal E.J.
        • Spector M.
        • Hayes W.C.
        Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
        J. Orthop. Res. 1992; 10: 405-422
        • Doehring T.C.
        • Rubash H.E.
        • Dore D.E.
        Micromotion measurements with hip center and modular neck length alterations.
        Clin. Orthop. 1999; 362: 230-239
        • Weinans H.
        • Huiskes R.
        • Grootenboer H.J.
        Effects of fit and bonding of femoral stems on adaptive bone remodeling.
        J. Biomech. Eng. 1994; 116: 393-400
      1. Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO. ESB Reseachr Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. J Biomech 1993;26:369–82

        • Duda G.N.
        • Heller M.
        • Albinger J.
        • Schulz O.
        • Schneider E.
        • Claes L.
        Influence of muscle forces on femoral strain distribution.
        J. Biomech. 1998; 31: 841-846
        • Bergmann G.
        • Graichen F.
        • Rohlmann A.
        Hip joint loading during walking and running, measured in two patients.
        J. Biomech. 1993; 26: 969-990
        • Chao E.Y.S.
        • Rim K.
        Application of optimization principles in determining the applied moments in human leg joints during gait.
        J. Biomech. 1973; 6: 497-510
        • Koch J.C.
        The law of bone architecture.
        Am. J. Anat. 1917; 21: 177-298
        • Evans F.G.
        • Lissner H.R.
        Stresscoat deformation studies of the femur under static vertical loading.
        Anat. Rec. 1948; 100: 159-190
        • Frankel V.
        The femoral neck. Almquist and Wiksells, Uppsala1960
        • Pauwels F.
        Über die mechanische Bedeutung der gröberen Kortikalisstruktur beim normalen und pathologisch verbogenen Röhrenknochen.
        Anat. Nachr. 1950; 1: 53-57
        • Pauwels F.
        Atlas zur Biomechanik der gesunden und kranken Hüfte. Springer, Berlin1973
        • Rybicki E.F.
        • Simonen F.A.
        • Weis E.B.
        On the mathematical analysis of stress in the human femur.
        J. Biomech. 1972; 5: 203-215
        • Duda G.N.
        • Schneider E.
        • Chao E.Y.S.
        Internal forces and moments in the femur during walking.
        J. Biomech. 1997; 30: 933-941
        • Rohlmann A.
        • Mössner U.
        • Bergmann G.
        • Kölbel R.
        Finite-element-analysis and experimental investigation of stresses in a femur.
        J. Biomed. Eng. 1982; 4: 241-246
        • Rohlmann A.
        • Mössner U.
        • Bergmann G.
        • Kölbel R.
        Finite-element-analysis and experimental investigation in a femur with hip endoprosthesis.
        J. Biomech. 1983; 16: 727-742
        • Claes L.
        • Augat P.
        • Suger G.
        • Wilke H.-.J.
        Influence of size and stability of the osteotomy gap on the success of fracture healing.
        J. Orthop. Res. 1997; 15: 577-584
        • Goodship A.E.
        • Cunningham J.L.
        • Kenwright J.
        Strain rate and timing of stimulation in mechanical modulation of fracture healing.
        Clin. Orthop. 1998; 355: 105-115
      2. van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO. ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. Biomech 1993;26:369–82

        • Halpern A.A.
        • Tanner J.
        • Rinsky L.
        Does persistent fetal femoral anteversion contribute to osteoarthritis?: a preliminary report.
        Clin. Orthop. 1979; : 213-216
        • Reikeras O.
        • Bjerkreim I.
        • Kolbenstvedt A.
        Anteversion of the acetabulum in patients with idiopathic increased anteversion of the femoral neck.
        Acta. Orthop. Scand. 1982; 53: 847-852
        • Morlock M.
        • Schneider E.
        • Blum A.
        • Vollmer M.
        • Bergmann G.
        • Müller V.
        • Honl M.
        Duration and frequency of every day activities in total hip patients.
        J. Biomech. 2001; 34: 873-881
        • Bergmann G.
        • Graichen F.
        • Rohlmann A.
        Is staircase walking a risk for the fixation of hip implants?.
        J. Biomech. 1995; 28: 535-553
        • Heller M.O.
        • Bergmann G.
        • Deuretzbacher G.
        • Dürselen L.
        • Pohl M.
        • Claes L.
        • Haas N.P.
        • Duda G.N.
        Musculo–skeletal loading conditions at the hip during walking and stair climbing.
        J. Biomech. 2001; 34: 883-893
        • Duda G.N.
        • Eckert-Huebner K.
        • Claes L.
        Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep.
        J. Biomech. 1998; 31: 201-210
        • Bergmann G.
        • Deuretzbacher G.
        • Heller M.
        • Graichen F.
        • Rohlmann A.
        • Strauss M.
        • Duda G.
        Hip contact forces and gait patterns from routine activities.
        J. Biomech. 2001; 34: 859-871
        • Andriacchi T.P.
        • Ogle J.A.
        • Galante J.O.
        Walking speed as a basis for normal and abnormal gait measurements.
        J. Biomech. 1977; 10: 261-268
        • Schneider E.
        • Michel M.C.
        • Genge M.
        • Perren S.M.
        Loads acting on an intramedullary femoral nail.
        in: Bergmann G. Graichen F. Rohlmann A. Loads acting on an intramedullary femoral nail. Freie Universität Berlin, Berlin1990: 221-227
      3. Taylor SJ, Walker PS, Perry J, Cannon SR, Woledge R. The forces in the distal femur and knee during different activities measured by telemetry. Trans Ann Meet Orthop Res Soc, San Francisco 1997;1:259

        • Finlay J.B.
        • Chess D.G.
        • Hardie W.R.
        • Rorabeck C.H.
        • Bourne R.B.
        An evaluation of three loading configurations for the in vitro testing of femoral strains in total hip arthroplasty.
        J. Orthop. Res. 1991; 9: 749-759
      4. Pauwels. Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Berlin: Springer; 1965. p. 518

        • Baleani M.
        • Cristofolini L.
        • Viceconti M.
        Endurance testing of hip prostheses: a comparison between the load fixed in ISO 7206 standard and the physiological loads.
        Clin. Biomech. 1999; 14: 339-345
        • Monti L.
        • Cristofolini L.
        • Viceconti M.
        Methods for quantitative analysis of the primary stability in uncemented hip prostheses.
        Artif. Organs. 1999; 23: 851-859
        • Huiskes R.
        • van B.
        Preclinical testing of total hip stems. The effects of coating placement.
        Clin. Orthop. 1995; 319: 64-76