Advertisement

Experimental models of osteoarthritis: the role of immobilization

  • T. Videman
    Correspondence
    Correspondence and reprint requests to: Dr T Videman, Institute of Occupational Health, Topeliuksenkatu 41 a A, SF-00250 Helsinki, Finland
    Affiliations
    Institute of Occupational Health, Topeliuksenkatu 41 a A, SF-00250 Helsinki, Finland
    Search for articles by this author
      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Evidence is reviewed from animal experiments supporting the hypothesis that immobilization, for whatever reason, is one of the pathogenetic factors in musculo-skeletal degeneration. It shows beyond reasonable doubt that immobilization is not only a cause of osteoarthritis but that it delays the healing process.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Biomechanics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Howell D.S.
        Osteoarthritis-etiology and pathogenesis.
        in: American Academy of Orthopaedic Surgeons. Symposium on osteoarthritis. The CV Mosby Company, St. Louis1976: 44
        • Meachim G.
        • Whitehouse G.H.
        • Pedley R.B.
        • Nichol F.E.
        • Owen R.
        An investigation of radiological, clinical and pathological correlations in osteoarthrosis of the hip.
        Clin Radiol. 1980; 31: 565-574
        • Sokoloff L.
        The biology of degenerative joint disease.
        The University of Chicago Press, Chicago and London1969
        • Gardner D.L.
        The experimental production of arthritis. A review.
        Ann Rheum Dis. 1960; 19: 297-317
        • Bentley G.
        Experimental osteoarthrosis.
        in: Ali S.Y. Elves M.W. Leaback D.H. Normal and osteoarthrotic articular cartilage. DH Kingswood Press, England1974: 259-283
        • Mankin H.I.
        • Lippiello L.
        Acute metabolic effect of nitrogen mustard and thiotepa on rabbit articular cartilage and synovium.
        Arthritis Rheum. 1979; 22: 579-585
        • Lenzi L.
        • Berlanda P.
        • Flora A.
        • Aureli G.
        • Rizzotti M.
        • Baldiuni C.
        • Boni M.
        Vitamin A induced osteoarthritis in rabbits: an experimental model for the study of human disease.
        in: Ali S.Y. Elves M.W. Leaback D.H. Normal and osteoarthrotic articular cartilage. Kingswood Press, England1974: 243-257
        • Ely L.W.
        • Mensor M.C.
        Studies on the immobilization of normal joints.
        Surg Gynecol Obstet. 1933; 57: 212-215
        • Finsterbush A.
        • Friedman B.
        Early changes in immobilized rabbits' knee joints: a light and electron microscopic study.
        Clin Orthop. 1973; 92: 305-319
        • Langenskiöld A.
        • Michelsson J.E.
        • Videman T.
        Osteoarthritis of the knee in the rabbit produced by immobilization.
        Acta Orthop Scand. 1979; 50: 1-14
        • Videman T.
        • Michelsson J.E.
        • Rauhamäki R.
        • Langenskiöld A.
        Changes in 35S-sulphate uptake in different tissues in the knee and hip regions of rabbits during immobilization, remobilization and the development of osteoarthritis.
        Acta Orthop Scand. 1976; 47: 290-298
        • Videman T.
        Experimental osteoarthritis in the rabbit. Comparison of different periods of repeated immobilization.
        Acta Orthop Scand. 1982; 53: 339-347
        • Videman T.
        Changes in compression and distances between tibial and femoral condyles during immobilization of rabbit knee.
        Arch Orthop Traumat Surg. 1981; 98: 189-191
        • Akeson W.H
        • Woo S.L.Y.
        • Amiel D.
        • Matthews J.V.
        Biomechanical and biochemical changes in the periarticular connective tissue during contracture development in the immobilized rabbit knee.
        Connect Tissue Res. 1974; 2: 315-321
        • Videman T.
        • Eronen I.
        • Candolin T.
        3H-proline incorporation and hydroxyproline concentration in articular cartilage during the development of osteoarthritis caused by immobilization.
        Biochem J. 1981; 200: 435-440
        • Eronen I.
        • Videman T.
        • Kurppa K.
        3H-proline incorporation in vivo in capsular tissues and menisci during the development of osteoarthritis.
        Scand J Rheumatol. 1984; 13: 121-128
        • Eronen I.
        • Videman T.
        • Friman C.
        • Michelsson J.E.
        Glycosaminoglycan metabolism in experimental osteoarthrosis caused by immobilization.
        Acta Orthop Scand. 1978; 49: 329-334
        • Videman T.
        • Eronen I.
        • Friman C.
        Glycosaminoglycan metabolism in experimental osteoarthritis caused by immobilization.
        Acta Orthop Scand. 1981; 52: 11-21
        • Lloyd-Roberts G.C.
        The role of capsular changes in osteoarthritis of the hip joint.
        J Bone Jt Surg. 1953; 35B: 627-642
        • Akeson W.H.
        • Amiel D.
        • Mechanic G.L.
        • Woo S.L.Y.
        • Harwood F.L.
        • Hamer M.L.
        Collagen cross-linking alterations in joint contractures: changes in the reducible cross-links in periarticular connective tissue collagen after nine weeks of immobilization.
        Connect Tissue Res. 1977; 5: 15-19
        • Vanharanta H.
        • Kuusela T.
        • Kiuru A.
        Early detection of developing osteoarthritis by scintigraphy: an experimental study on rabbits.
        Eur J Nucl Med. 1984; 9: 426-428
        • Videman T.
        • Michelsson J.E.
        Inhibition of development of experimental osteoarthritis by distraction during immobilization.
        IRCS Med Sci. 1977; 5: 139
        • Videman T.
        • Vanharanta H.
        Daily repeated traction in developing osteoarthritis. An experimental study in rabbits.
        Ann Chir Gynaecol. 1983; 72: 200-206
        • Videman T.
        The effect of running on the osteoarthritic joint: an experimental matched-pair study with rabbits.
        Rheumatoi Rehabil. 1982; 1: 1-8
        • Candolin T.
        • Videman T.
        Effects of running on the scanning electron microscopic appearance of joint surfaces of rabbits.
        Scand J Rheumatol. 1986; 60: 39
        • Vignon E.
        • Hartmann J.
        • Vignon G.
        • et al.
        Cartilage destruction in experimentally induced osteoarthritis.
        J Rheumatol. 1984; 11: 202-207
        • Mankin H.J.
        The reaction of articular cartilage to injury and osteoarthritis.
        N Engl J Med. 1974; 291: 1335-1340
        • Moskowitz R.W.
        Experimental models of degenerative joint disease.
        Semin Arthritis Rheum. 1972; 1: 95-116
        • Colombo C.
        • Butler M.
        • O'Byrne E.
        • Hickman L.
        • Swartzendruber D.
        • Selwyn M.
        • Steinetz B.
        A new model of osteoarthritis in rabbits. 1. Development of knee joint pathology following lateral meniscectomy and section of the fibular collateral and sesamoid ligaments.
        Arthritis Rheum. 1983; 26: 875-886
        • Telhag A.
        • Lindberg L.
        A method for inducing osteoarthritic changes in rabbits' knee.
        Clin Orthop. 1972; 86: 214-223
        • Radin E.L.
        • Ehrlich M.G.
        • Chernack R.
        • Abernethy P.
        • Paul I.L.
        • Rose R.M.
        Effect of repetitive impulsive loading on the knee joints of rabbits.
        Clin Orthop. 1978; 131: 288-293
        • Palmoski M.J.
        • Brandt K.D.
        Effects of static and cyclic compressive loading on articular cartilage plugs in vitro.
        Arthritis Rheum. 1984; 27: 275-281
        • Salter R.B.
        • Simmonds D.F.
        • Malcolm B.W.
        • Rumble E.J.
        • MacMichael D.
        • Clements N.D.
        The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage.
        J Bone Jt Surg. 1980; 62-A: 1232-1251
        • Frank C.
        • Akeson W.H.
        • Woo S.L.Y.
        • Amiel D.
        • Coutts R.D.
        Physiology and therapeutic value of passive joint motion.
        Clin Orthop. 1984; 185: 113-125
        • Shimizu T.
        • Videman T.
        • Shimazaki K.
        • Mooney V.
        Experimental study on the repair of full thickness articular cartilage defects: The effects of continuous passive motion versus immobilization.
        J Orthop Res. 1987; 5: 187-197
        • Österman H.
        • Videman T.
        • Österman K.
        Changes in rabbit intervertebral discs after posterior fusion or facet joint resection.
        Scand J Rheumatol. 1986; 60: 54
        • Lipson S.J.
        • Muir H.
        Proteoglycans in experimental intervertebral disc degeneration.
        Spine. 1981; 6: 194-209
        • Gill K.
        • Videman T.
        • Shimizu T.
        • Mooney V.
        Experimental intervertebral disc degeneration. Studies on the pathogenesis and therapy.
        in: Presented at the Annual Meeting of the International Society for the Study of the Lumbar Spine, Rome, ItalyMay 24–28, 1987
        • Altman R.D.
        • Meenan R.E.
        • Hochberg M.C.
        • Bone Jr, G.G.
        • Brandt K.
        • Cooke T.D.V.
        • Greenwald R.A.
        • Howell D.S.
        • Kaplan D.
        • Koopman W.J.
        • Mankin H.
        • Mikkelsen W.M.
        • Moskowitz R.
        • Sokoloff L.
        An approach to developing criteria for the clinical diagnosis and classification of osteoarthritis.
        J Rheumatol. 1983; 10: 180-183
        • Tenenbaum J.
        Experimental models of osteoarthritis: a reappraisal.
        J Rheumatol. 1984; 11: 120-121